
To appear in Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (2011)

Robust Real-Time Deformation of
Incompressible Surface Meshes

R. Diziol1 J. Bender2 D. Bayer1

1Karlsruhe Insitute of Technology, Germany
2Graduate School CE, TU Darmstadt, Germany

Abstract

We introduce an efficient technique for robustly simulating incompressible objects with thousands of elements in
real-time. Instead of considering a tetrahedral model, commonly used to simulate volumetric bodies, we simply
use their surfaces. Not requiring hundreds or even thousands of elements in the interior of the object enables us
to simulate more elements on the surface, resulting in high quality deformations at low computation costs. The
elasticity of the objects is robustly simulated with a geometrically motivated shape matching approach which is
extended by a fast summation technique for arbitrary triangle meshes suitable for an efficient parallel computation
on the GPU. Moreover, we present an oscillation-free and collision-aware volume constraint, purely based on the
surface of the incompressible body. The novel heuristic we propose in our approach enables us to conserve the
volume, both globally and locally. Our volume constraint is not limited to the shape matching method and can be
used with any method simulating the elasticity of an object. We present several examples which demonstrate high
quality volume conserving deformations and compare the run-times of our CPU implementation, as well as our
GPU implementation with similar methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Interactive simulation of deformable objects is an impor-
tant topic in computer graphics. Additionally, the preser-
vation of volume is essential when simulating deformable
models. Not only does it play an important role when sim-
ulating biological tissues, such as muscles [HJCW06], but
it also provides more realistic deformations and is therefore
used in shape modeling [vFTS06]. Unfortunately, achieving
real-time simulations in combination with volume conser-
vation is still a difficult task. While different methods have
been presented, many of them are simply not robust or fast
enough to be used in interactive applications. Furthermore,
most real-time methods introduce special restrictions, such
as lowering the complexity of the simulation mesh, or do
not consider the volume at all. Other systems, which are ro-
bust and accurate enough, tend to be non-interactive when
using thousands of geometric elements, and may be difficult
to implement for a parallel computation on the GPU.

We propose an efficient and robust simulation method for
incompressible deformable objects. In contrast to most sys-
tems, we only consider a closed triangle mesh for our sim-
ulation model and thus we do not need any manual prepro-
cessing or creation of special simulation models, like tetra-
hedral meshes. Not requiring elements in the interior of the
object not only saves computation time but also memory to
store the object. Our system handles thousands of elements
in real-time, does not have any stability issues, is able to con-
serve the volume, both globally and locally, produces high
quality and visually plausible deformations, is easy to im-
plement and benefits from the speed of today’s GPUs.

The elasticity of the objects is simulated with an uncon-
ditionally stable method called shape matching [MHTG05].
This method is able to simulate visually plausible elastic and
plastic deformations. Fortunately, shape matching is robust
by construction which allows bigger time steps for inter-
active applications. The method matches points which are

c© ACM, (2011) This is the author’s version of the work. It is posted here by permission of
ACM for your personal use. Not for redistribution. The definite version will be published
in Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation (2011).

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

Figure 1: Real-time deformations: Armadillos (32442 particles total), 20 ducks and 20 tori (21280 particles total), and 20
balls (7640 particles total) robustly deform with computation times of 4.69ms, 3.54ms, and 2.34ms for one time step and have
a maximum volume loss of 0.1%, 0.5%, and 0.2% for an individual object respectively in each scene.

clustered in several overlapping regions to their best rigid
body transformations. While the original approach is lim-
ited to only a few overlapping regions in real-time, Rivers
and James [RJ07] extended the method by fast summations
on regular lattices with many regions. However, their sum-
mation technique is not extendable to irregular models and
is not suitable for an efficient parallel computation on the
GPU. Our novel summation technique overcomes these lim-
itations and is not limited to the shape matching method. Ad-
ditionally, we preserve the volume of the object which is usu-
ally changed after resolving collisions. In order to make sure
that already solved collisions are not corrupted again, the
volume correction has to consider collisions. Furthermore,
simply correcting positions introduces oscillations [ISF07].
We therefore propose an oscillation-free and collision-aware
volume constraint which is able to conserve the volume both
globally and locally. We use the volume formulation pre-
sented in [HJCW06] where volume preservation for a mass-
spring system was used. This formulation enables us to de-
fine a local volume correction. While Hong et al. [HJCW06]
only considered special collision forces for the local volume
correction, we present a new heuristic which measures the
volume change and we also consider the velocities in a sim-
ilar way to eliminate oscillations. In addition, our volume
constraint does not only work with the shape matching ap-
proach but can be used with any other method that simulates
the elasticity of an object.

Our contributions:
• A fast and robust deformation technique for incompress-

ible triangle meshes with thousands of elements executed
on the GPU.
• A method purely based on the surface of the object, reduc-

ing the computational costs and memory consumption.
• An oscillation-free and collision-aware volume constraint

for both global and local volume conservation.
• An efficient parallel summation algorithm for shape

matching with arbitrary triangle meshes.

2. Related work

One of the first studies about deformable objects was
[TPBF87] which presented a simulation method based on
finite differences, followed by many different approaches
such as the finite element method [OH99], the finite volume
method [TBHF03], the boundary element method [JP99],
and mass-spring systems [DSB99]. A survey of physically
based deformable models in computer graphics is given in
[GM97] and [NMK∗05].

Different approaches have been presented to improve the
speed of those simulation methods. For instance, Wu et
al. [WDGT01] introduced an adaptive method for non-linear
finite elements based on progressive meshes [Hop96]. De-
bunne et al. [DDCB01] presented an automatic space and
time adaptive level of detail technique for continuous models
which uses an adaptive time stepping and a non-nested mul-
tiresolution hierarchy of tetrahedral meshes. In [CGC∗02],
a hierarchical basis on the control lattice was defined in or-
der to enable a level of detail adaption and therefore an in-
teractive simulation. Grinspun et al. [GKS02] used a refine-
ment of the basis functions instead of refining the elements
to reduce the computational costs. In order to be able to cut
deformable models, Steinemann et al. [SOG08] applied an
adaptive shape matching method based on an octree repre-
sentation using a linear fast summation technique. Adaptive
methods improve the speed of the simulation but at a loss
of accuracy. Instead of applying adaptive methods, real-time
simulations can also be obtained by dimensional model re-
duction techniques. Barbič and James [BJ05] used a precom-
puted subspace integration method in order to get fast simu-
lations which, on the other hand, could restrict the deforma-
tions when using a non-optimal low-dimensional subspace.

Additionally, the numerical stability has been ad-
dressed by many authors. The method of Terzopoulos
et al. [TPBF87] becomes numerically ill-conditioned for
stiff models. They solved this problem by using a hybrid

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

model which consists of a rigid and a deformable compo-
nent [TW88]. In [BW98] an implicit integration method was
used in order to perform a stable simulation with large time
steps. To solve the numerical issues and reduce the costly
computation, when using a non-linear strain tensor, Müller et
al. [MDM∗02] used a precomputed stiffness matrix in com-
bination with a tensor field for local rotations. In contrast
to that, Irving et al. [ITF04] introduced invertible finite ele-
ments for the robust simulation of large deformations.

Volume loss can be a distracting artifact when large de-
formations occur. With meshless methods, as presented in
[MKN∗04], it is possible to directly adjust common ma-
terial properties derived from continuum mechanics, such
as Poisson’s ratio. However, the used moving least squares
method cannot guarantee a precise conserved volume. In
order to simulate realistic plastic deformations, Bargteil et
al. [BWHT07] presented an enhanced plasticity model that
allows volume preservation but is intended for offline simu-
lations. Nedel and Thalmann [NT98] used additional angular
springs in their mass-spring system to preserve the shape of a
muscle. However, the volume of the model is not conserved
accurately in their approach. Teschner et al. [THMG04] de-
fined an energy function for each tetrahedron of their model
in order to obtain forces which preserve the local volume
approximately. Purely local volume conservation was pre-
sented in [ISF07]. They solved the locking problem which
commonly arises when using a high Poisson’s ratio with the
linear finite element method. Unfortunately, their approach
is not suitable for real-time applications with many elements.
Global volume correction was also used in mesh skinning
techniques [vFTS08] and can also be applied to the lattice
shape matching approach [TK09].

3. Overview

The time integration scheme used for the simulation has to
consider the elasticity of the objects, constraints between ob-
jects, such as collisions, and the objects’ volumes. Volume
change can occur directly by modifying positions or indi-
rectly via velocity alterations. Trying to make an object in-
compressible by merely constraining the positions can cause
oscillations. That is because artificially correcting positions
during a time step effectively changes the corresponding ve-
locities for that step, and thus yield overshooting in the next
time step. To overcome this problem, we treat errors in posi-
tions and velocities separately, following [ISF07].

We use a closed triangle mesh with a particle located at
every vertex which contains dynamic attributes like velocity
and mass. Our system uses the following simple time inte-
gration scheme with step size ∆t and external acceleration a,
like gravity, to advance particle positions and velocities from
(xn,vn) to (xn+1,vn+1):

1. vn+1 = vn +∆ta
xn+1 = xn +∆tvn+1

2. Modify xn+1 and vn+1 to account for the elastic behavior.
3. Collide objects and modify xn+1 and vn+1 to achieve a

collision free state and simulate friction.
4. Correct positions xn+1 to restore the volume without vi-

olating collisions.
5. Correct velocities vn+1 to avoid oscillations.

While Steps 1-3 can be realized with any method of your
choice, we propose a fast and robust geometrically motivated
approach leading to visually plausible results. This method,
as described in Section 4, is stable even when using an ex-
plicit Euler integration scheme. As Step 3 already modifies
positions to get a collision free state, the volume correction
in Step 4 needs to take those collisions into account. The
last step makes the velocity field divergence free to avoid a
volume change in the next time step, thus eliminating oscil-
lations. Steps 4 and 5 are described in Section 5.

4. Elastic Behavior

The elastic behavior of deformable objects can be computed
in different ways. Mass-spring systems [THMG04] or more
sophisticated methods like the well-known finite element
method are typically used. Both methods have the drawback
that they are not unconditionally stable when using a fast
explicit time integration scheme. On the other hand, using
a stable implicit integration scheme [BW98] is more time
consuming, limiting the number of particles that can be sim-
ulated interactively. Additionally, many particles in the inte-
rior of the object have to be simulated when using volumet-
ric elements such as tetrahedrons. As we are interested in
interactive applications, we use the fast and unconditionally
stable shape matching approach [MHTG05] to compute the
elastic behavior. Instead of using volumetric models, only
the surface of the object is considered disregarding all inte-
rior particles. With our novel fast summation technique it is
possible to simulate smooth deformations with thousands of
particles in real-time as shown in Figure 1.

x1

x2
x3

x0
0 x0

1

x0
2 x0

3

x0

g0

g1g2

g3

R, t

Figure 2: Shape Matching: The undeformed points x0
i are

matched to the deformed points xi by a rigid transformation
defining goal positions gi. The goal positions are then used
to pull the deformed points towards them.

Shape Matching: Updating particle positions by consid-
ering the forces originating from stress and strain can cause
overshooting and instabilities. This difficulty is avoided by
the shape matching approach which rather defines goal posi-
tions gi for all particles after evolving the particles forward
in time. Using the goal positions to pull the deformed parti-
cles towards them, as shown in Figure 2, avoids the typical

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

overshooting problems. The goal positions are computed by
finding the best rigid transformation which matches a set of
given particles: given positions x0

i in a non-deformed state
and the integrated positions xi = xn+1

i we find the rotation
matrix R and translation vectors t and t0 which minimize:

∑
i

mi

(
R
(

x0
i − t0

)
+ t−xi

)2
,

where mi are weights of individual particles, typically their
masses. According to [MHTG05], the optimal translation
vector t is the center of mass and t0 is the initial center of
mass respectively:

t0 =
1
M ∑

i
mix0

i , t = 1
M ∑

i
mixi , M = ∑

i
mi . (1)

The matrix R is the rotational part of the affine transforma-
tion,

A = ∑
i

mi (xi− t)
(

x0
i − t0

)T
, (2)

which is extracted via a polar decomposition. We use cyclic
Jacobi iterations with a “warm start” (see [GVL96]) to ob-
tain the square root U from the diagonal form of ATA = U2

and get R = AU−1. Given the optimal rigid transformation
for a set of particles, the goal positions,

gi = T
[

x0
i

1

]
,

are computed for each particle with T = [R (t−Rt0)]. The
goal positions define the transformed original shape mini-
mizing the distance to the current deformed particles. Using
these goal positions, we update positions and velocities ac-
cording to:

vn+1
i := vn+1

i + s
gi−xi

∆t
(3)

xn+1
i = xn

i +∆t vn+1
i ,

with the user defined stiffness s ∈ [0,1] of the object which
controls how fast the particles will move to their resting
state. By updating the velocities vn+1

i using the given goal
positions gi we overcome the common stability issues. Ad-
ditionally, the velocities can be damped before updating the
final positions in order to gain more realistic results.

Simulation Model and Shape Regions: Instead of simu-
lating many particles in the interior of the object, we simply
use a closed triangle mesh for our simulation model. This
allows us to simulate more particles on the surface of the ob-
ject and thus ensures a smooth deformation without wasting
computation time for the interior of the object. Computing
only one transformation for all particles results in a rigid
motion. Instead, we partition our triangle mesh into mul-
tiple overlapping regions. For each particle of the triangle
mesh we define a region Ri. It contains all the particles in
the ω-ring of the i-th particle. The region size ω is a user
defined constant that further defines the stiffness of the ob-
ject. Larger values of ω makes the model stiffer because the

Figure 3: An Armadillo degenerates due to disabled
physics. Our method is still able to quickly recover from in-
verted or degenerated states after enabling the deformable
physics simulation again.

shape matching becomes more global. First, we compute the
optimal rigid transformation for each region as well as the
goal positions for all particles. The final goal positions are
then obtained by blending the goal positions from all regions
containing the particle:

gi =
1
|Ri| ∑

j∈Ri

T j

[
x0

i
1

]
.

A general problem when using shape matching is the fact
that the here used method to compute the polar decomposi-
tion cannot extract a proper rotation if detA=0. This is the
case, when all particles in a region are coplanar which occurs
quite often when purely considering the surface of an object.
Therefore, we add an extra point, which is based on the sur-
face normal, to the region when building the affine matrix A
from Equation 2. With ni being the averaged normal of all
triangles containing the i-th particle, we add the point,

p = xi + lni ,

to the region Ri, where l = 1
|Ri| ∑ j∈Ri

m j‖x0
j − t0‖ is the

weighted average length of all particles to the initial center
of mass of the i-th region. Using the average length l, we as-
sure that the normal has the same influence on the affine ma-
trix as the initial points, so that the extracted rotation is not
noticeably affected when detA>0. As the extra point cannot
completely avoid detA < 0, which would result in an ori-
entation reversing orthogonal transformation instead of the
closest rotation, we fix this as described in [AHB87] by sim-
ply negating the last column of A if necessary. The problem
could also be solved by computing a singular value decom-
positions (SVD) A=USVT using two-sided Jacobi rotations
as proposed in [TKA10]. However, this method is slightly
slower than our approach and requires to store the additional
matrix U for a warm start. In contrast, using one-sided Ja-
cobi rotations [GVL96] to compute the SVD is equally fast

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

as our approach (because the non-diagonal elements of ATA
are implicitly set to zero) but seems to be numerically more
difficult for nearly singular eigenvalues since U is computed
by column scaling which can break the orthogonality of U.
More importantly, our experiments show that adding the ex-
tra point gives enough stability in practice and thus allows us
to restore objects which are completely inverted or degener-
ated, as shown in Figure 3.

P0

P1

P2

P3

P4

−
x0+x1+x2

−
x1+x2+x3

Path P0 sum
in regions

x0+x1x0 x0+x1+x2+x3x0+x1+x20Prefix sum P0

x0 x1 x2 x3

Figure 4: Fast Summation: Two overlapping shape regions
with size ω = 2 of two particles (red and yellow) and the
associated paths Pi (blue). Computing the sum over a region
is done by first computing the prefix sums over the associated
paths and then adding the difference of the borders to the
region’s sum as shown for P0.

Fast Summation: When increasing the region size ω the
naive computation of the sums of each region in Equations 1
and 2 becomes a system bottleneck. For a mesh with n re-
gions computing the sums to construct ti and Ai for all re-
gions takes O

(
ω

dn
)

operations, where d is the dimension of
the simulation mesh. Using a regular lattice (d = 3), Rivers
and James [RJ07] have shown how to reduce the costs for
sum computation to O(n) by reusing already computed sums
of neighboring regions. Unfortunately, their approach cannot
be directly extended to irregular lattices or arbitrary triangle
meshes. Furthermore, their approach is not suitable for an ef-
ficient parallel computation because of direct dependencies
between neighboring regions. Instead, we present a novel so-
lution for triangle meshes (d = 2) which takes O(ωn) instead

of O
(

ω
2n
)

operations and is suitable for an efficient parallel
computation.

For each region we want to compute,

ti =
1

Mi
∑

j∈Ri

m jx j

Ai = ∑
j∈Ri

m j
(
x j− ti

)(
x0

j − t0
i

)T

= ∑
j∈Ri

m jx jx0
j
T
−Mitit0

i
T
, (4)

where Mi is the precomputed mass of the specific region. To
quickly compute the sums for all regions, we first generate

multiple paths (see below) through the edges of the trian-
gle mesh. A path Pi is a set of ordered particles xi1 , . . . ,xin
which are connected through the edges of the triangle mesh
(see Figure 5). The paths cover all particles of the mesh, so
that each particle is part of exactly one path. The sum com-
putation, as depicted in Figure 4, is split into two phases.
First, we compute the prefix sum [SHZO07] for each path
Pi with elements xi j , j ∈ [1,ni]:

ti j =
j

∑
k=1

mik xik , Ai j =
j

∑
k=1

mik xik x0
ik

T
.

Computing all prefix sums takes O(n) operations and can
efficiently be done in parallel. In the second step, we com-
pute the final sums for each region. Each region initializes
its sums ti := 0 and Ai := 0. If a region contains the particles
of the i-th path with indices [ik, . . . , il] we add,

ti := ti + til − tik−1 , Ai := Ai +Ail −Aik−1 ,

to the region’s sums. The final affine matrix of a region is

then Ai := Ai−Mitit0
i

T
. Note that the fast summation for

the affine matrix only works because the sum in Equation 4
is region independent and only depends on the particles j but
not the region i. Building the final sums takes O(ωn) opera-
tions because each region has roughly 2ω+1 paths (compare
Figure 4 for a regular mesh) passing through it in an optimal
path layout. Our fast summation technique is illustrated in
Figure 4 for two regions. Computing the regions’ sums as
well as the prefix sum is done in parallel. Note that the trans-
formation matrices Ti are computed analogously in parallel
by first computing the prefix sums over the paths and then
summing them up over the regions.

Figure 5: The resulting paths (each in a different color) for
the Armadillo and the duck model from our path generation
algorithm used to compute our fast summation technique.

Path Construction: In order to compute the sums of a
region, we need to subtract values from the computed prefix
sums. The layout of the paths can have a large impact on the
run-time. It would be optimal if each region had only one

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

path that crosses it, so that the region’s sum could be eval-
uated by a single subtraction, but unfortunately, this is not
possible. We therefore aim to generate as few paths as possi-
ble so that each region has only a small number of crossing
paths, reducing the required memory transactions. As it is
difficult to find the most optimal path layout, our greedy path
generation algorithm successively grows paths based on a
heuristic to reach a good solution for this optimization prob-
lem. We start with a single vertex and add neighbors until
the path length exceeds a given size or cannot be extended
any further. Our heuristic tries to grow a path by choosing
vertices which also have neighbors that are already part of a
path. This avoids gaps between paths and places the paths in
a parallel fashion. We then select the vertex which generates
lines that are as parallel as possible. Therefore, we use the
vertex with the smallest distance to a plane passing through
the starting vertex of the current path, e. g. the X-Y -plane.
Figure 5 shows the results of our path generation algorithm.

Damping: In order to damp the velocities in Equa-
tion 3, we use the stable method introduced by Müller et al.
[MHHR07]. Damping is performed per region (see [RJ07]).
The required inertia tensor and the angular momentum, that
are used to compute the angular velocity, as well as the lin-
ear velocity, are efficiently computed in parallel using our
fast summation technique. Notice that damping is not nec-
essary to achieve a stable simulation but it can enhance the
visual result.

5. Volume Preservation

Simulating deformable bodies without considering their vol-
umes can cause a huge volume loss which might look im-
plausible (see Figure 6). We use the volume formulation
given in [HJCW06] and transform the volume integral of the
vector field f(x) ∈ R3,x ∈ R3 over the volume V into a sur-
face integral using the divergence theorem:∫∫∫

V

∇· f(x)dx =
∫∫
∂V

f(x)Tn(x)dx ,

where ∂V is the boundary of the volume and n is the outer
surface normal vector. Thus, the volume of the body can be
simply computed using the identity function f(x) = x:∫∫∫

V

∇·xdx =
∫∫
∂V

xTndx = 3V . (5)

Equation 5 defines the constraint C :=
∫∫

∂V xTndx−3V0 = 0
for Step 4 of our integration scheme, where V0 is the object’s
volume in the non-deformed state. The surface integral of
Equation 5 can be written as a sum over all triangles Ti, i =
1, . . . ,m, formed by particle positions ai, bi, and ci:∫∫

∂V

xTndx =
1
3

m

∑
i=1

Ai(ai +bi + ci)
Tni , (6)

where Ai is the area of the i-th triangle.

Figure 6: Three frames of a simulated twirled bar: The vol-
ume correction (left bar) avoids implausibly large deforma-
tions (right bar) while taking only the surface into account.

Given the positions of our particles X = [xT
1 , . . . ,x

T
n]

T we
want to find the offset ∆X so that C(X+∆X) = 0. We use the
position-based approach [MHHR07] to fulfill the constraint
and obtain the correction for each individual particle:

∆xi =−
wiC(X)

∑ j w j‖∇x jC(X)‖2∇xiC(X) , (7)

where wi are weights used to localize the volume correc-
tion (see below) and ∇xiC(X) = ∂C(X)/∂xi. In contrast
to [HJCW06] we define a heuristic for the weights which en-
ables us to define local volume correction based on the cur-
rent motion of the object. Computing the gradient of∇C(X)
is done as follows. Rewriting the discrete surface integral
from Equation 6 into a sum over all particle positions xi,
i = 1, . . . ,n, yields:

1
3

m

∑
i=1

Ai(ai +bi + ci)
Tni =

1
3

n

∑
i=1

xT
i ni , (8)

where ni =∑A jn j denotes the sum of the area weighted nor-
mals of all triangles containing the i-th particle. To simplify
computations on the GPU, we assume fixed normals during
the correction and approximate the gradient by:

∇C(X)≈ 1
3
[nT

1 , . . . ,n
T
n]

T .

In our experiments the approximate gradient did not change
the results significantly compared to the full expression
which includes the negligible terms: xi∂ni/∂x j .

Unlike [HJCW06] we also correct velocities to avoid
overshooting problems in the following time step. Differen-
tiating Equation 5 with respect to t, under the assumption of
constant V , leads to:∫∫∫

V

∇·vdx =
∫∫
∂V

vTndx = 0 , (9)

which turns out to be the divergence free velocity field for an
incompressible object. The constraint C :=

∫∫
∂V vTndx = 0

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

for Step 5 of our integration scheme is corrected analogously
to the position constraint.

Local Volume Preservation: If all weights wi are equal
our constraint defines a global volume correction. In order
to localize the correction we choose the weights wi in such a
way that only particles for which a volume change occurred
are affected. We use a heuristic to define these weights. Vol-
ume change occurs around particles which deform due to
external and internal forces. Therefore, we set the weights
wi in relation to the amount of change computed during the
shape matching:

wi = (1−α)

(
‖ci‖

∑ j ‖c j‖

)
︸ ︷︷ ︸

= gi

+α
1
n
. (10)

Here ci is the change of the particle positions from the shape
matching and α ∈ [0,1] allows the user to change the behav-
ior between local and global volume correction. When using
local weights gi, particles that stay under stress tend to par-
ticipate more in the volume correction compared to particles
not moving at all. Assuring that ∑gi = 1, we get a smooth
transition between global and local volume conservation.

Inner Structures: To further improve the behavior of the
volume constraint, we mimic the interior dynamics of the
object. Shape matching only propagates volume changes at
the surface of the object but cannot directly propagate vol-
ume changes through the object. Therefore, we insert dis-
tance constraints into the interior of the object. The dis-
tance constraints are used to measure how fast the volume
change should be propagated through the interior of the ob-
ject. Given a non-deformed particle x0

i , we intersect the ray
x0

i −λn0
i , λ > 0 with the triangle mesh. We then construct a

distance constraint C(xi,xk) :=‖xi− xk‖−‖x0
i − x0

k‖ from
x0

i to the nearest particle x0
k of the first triangle the ray hits.

The distance constraints do not affect the positions or ve-
locities of particles, instead they are only used to measure
how fast the volume change should be propagated through
the object. We modify the weights gi of Equation 10 by

gi =
βsidi +(1−β)‖ci‖

∑ j
(
βs jd j +(1−β)‖c j‖

) ,
where di = |C(xi,xk)| is the change of the length of the dis-
tance constraint weighted with the stiffness si. The parame-
ter β∈ [0,1] allows the user to define how much the distance
constraint affects the weights. The stiffness parameter si in
our distance constraint accounts for different thicknesses of
the object. In contrast to thick structures, thin structures
should not be able to squeeze too much. To account for this
behavior the user defines two stiffness values smax ∈ [0,1]
for the shortest distance constraint and smin ∈ [0,1] for the
longest distance constraint in the non-deformed model. The
stiffness si of each individual distance constraint is the linear
interpolation between smin and smax depending on its initial
length.

Considering Collisions: If a particle collides with an ob-
stacle, the volume correction must not violate the collision
constraint. We therefore set the weights of colliding particles
to zero but only for the position update and not for the veloc-
ity update. Such a strategy ensures that already resolved col-
lisions are not violated, while the volume change still affects
the colliding object through the velocities. Additionally, we
smooth the weights with a Laplacian filter [DMSB99] to
avoid drastic changes in the weights near collided particles.
Note that the discrete Laplacian operator, namely the um-
brella operator, can also be efficiently computed on the GPU
using our fast summation technique.

6. Implementation Details

The elastic behavior as well as the volume constraint are
computed on the GPU using CUDA. In order to avoid ker-
nel starts for each object separately, we pack all the parti-
cles from all objects into one array and simulate all objects
at once. The particles are stored in the array according to
the order of the paths so we can apply the fast summation
technique as described in Section 4. First, all vertices of the
first path are stored in the array, then those from the second
path and so on. This ordering enables us to compute all the
prefix sums via one segmented prefix sum [SHZO07]. Note
that we limit our path length to 512 due to numerical reasons
(see below) and have a fixed segmentation for the prefix sum.
Thus, we can evaluate the prefix sum with only two CUDA
kernels and achieve nearly the same speed as for the normal
prefix sum. While the computation of the segmented prefix
sum has no random memory accesses, we store the result of
the segmented prefix sum in a texture to benefit from cached
texture reads in the second pass of the fast summation.

In order to compute the volume constraint in parallel, we
only need to evaluate the volume integral from Equations 5
and 9 as well as the weights for the localization. The rear-
ranged discrete integral over the vertices from Equation 8
and the weights for the localized volume constraint are com-
puted via a segmented sum reduction. The umbrella opera-
tor, used for smoothing the weights, is again computed using
our fast summation technique.

Numerical Stability: Due to the fact that we evaluate all
computations on the GPU with 32 bit floating-point arith-
metics, the result of the segmented prefix sum becomes
numerically unstable for long paths. The evaluation of the
affine transformation A becomes particularly unstable be-

cause of the “quadratic term” xix0
i

T
. We therefore limit the

path length to 512. Additionally, as the rotation R, which is
computed via the polar decomposition, is independent of any
translation or scaling, we can translate and scale the affine
transformation A. We simply compute all sums in an object
based local coordinate system with the origin xn

0 and a pre-
computed scaling factor, so that each particle is bound to
[−1,1]3. Limiting the positions in the local coordinate sys-

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

Scene # Particles ω α / β / s Max. Vol. Loss CPU Naive CPU Fast Sum. GPU Shape Matching GPU Vol. Corr. GPU Total

Armadillos 32442 3 0.1 / 0.1 / 0.9 0.1% 114.75 69.92 2.89 1.80 4.69
Ducks and Tori 21280 2 0.2 / 0.1 / 1 0.5% 44.88 30.2 2.03 1.51 3.54
Balls in Glass 7640 2 0.5 / 0.1 / 1 0.2% 15.86 10.58 1.20 1.14 2.34

Table 1: Scene statistics and simulation timings: Number of simulated particles, region size ω, and simulation parameters
used for each scene together with the maximum volume loss for an individual object. Timings (in ms) are listed for the naive
implementation and the fast summation technique on the CPU. GPU timings are split into the shape matching part including
damping and the volume correction part. GPU timings also include the time needed to copy data between CPU and GPU.

tem together with the limited path length enables us to com-
pute the deformation without numerical problems.

Visualization: Even though we use highly detailed trian-
gle meshes, it might not be most beneficial to simulate all
small details. Instead, a coarse simulation model can be used
with the fine details only added for the sake of visualization.
To achieve smooth deformations of fine details, we use the
idea of Phong-shading. This has also been used in the field
of modeling with multiresolution hierarchies to preserve fine
details [KVS99]. The idea is to assign each fine detail vertex
p to a triangle of the non-deformed coarse simulation mesh
and reconstruct the vertex after the deformation based on the
triangle’s vertices and its interpolated normals at the corners.
As the bilinear interpolated normals over the triangles define
a continuous normal field, we can find a base point q on a tri-
angle T (a,b,c) by setting the function

F : (α,β)→ (p−q(α,β))×nq(α,β)

to zero, where q = αa+ βb+ γc is the point on the trian-
gle with barycentric coordinates α, β, and γ = 1− α− β

and nq = αna + βnb + γnc the according bilinear interpo-
lated normal. The barycentric coordinates are precomputed
by solving the bivariate quadratic equation F(α,β) = 0 with
several Newton-iteration steps. With the signed distance d =

sign
(
(p−q)Tnq

)
‖p− q‖ and the barycentric coordinates

we can reconstruct the detail vertex at any time by evaluat-
ing pn+1 = qn+1 +dnn+1

q .

7. Results

All of our examples use an Intel Core i7 950 with a NVIDIA
GeForce GTX 470. Although our robust simulation method
can handle large time steps, we run all simulations with a
fixed time step size of 5ms to ensure that our discrete colli-
sion detection does not miss any collisions. We use a bound-
ing volume hierarchy to prune unnecessary tests and only
perform vertex-triangle collisions. For the inner structures
we use the parameters smin = 0.01 and smax = 0.1 in all sce-
narios. Additionally, the visualization of our models uses the
technique as described in Section 6.

As a stress test, four deformable spheres, each consisting
of 1562 particles, are squeezed by a plate, as depicted in Fig-
ure 7. We compare the global to the local volume correction
technique, with and without inner structures. Using inner

Figure 7: Volume comparison of four spheres squeezed by a
plate (left to right): Global volume conservation, local vol-
ume conservation with distance constraints (β = 0.1), local
volume conservation without distance constraints (β = 0),
and without volume conservation at all. The maximum vol-
ume loss is 0.6%, 0.7%, 0.7%, and 40% for each sphere.

structures avoids overly excessive squeezing of the sphere.
While the sphere with global volume correction does not
change its shape considerably when it hits the ground, the lo-
cal volume correction allows larger deformations. Although
we only use a triangle surface for our simulation model,
large deformations such as the twirl in Figure 6 can be visu-
ally plausibly simulated if the volume is taken into account.
Additionally, our method is able to recover from completely
inverted or degenerated states, as shown in Figure 3.

Run-times for the complex scenes from Figure 1 are sum-
marized in Table 1. These run-times are measured without
taking collision detection into account, which is executed
in parallel and takes up to 9ms in our scenes. Due to the
fact that our collision detection is currently performed on
the CPU, the simulation data has to be copied between CPU
and GPU in each time step. Timings from the GPU imple-
mentation include damping as well as the time needed to
copy the data between CPU and GPU. It is also important to

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

Figure 8: Comparison between fast lattice shape matching
(right) and our method (left): Both methods produce similar
deformations but our method also considers the volume.

mention that starting CUDA kernels and preparing memory
transactions take some time, which results in run-times of
about 1.5ms even when simulating only a few particles.

While it is difficult to compare our method to physi-
cally accurate methods such as [ISF07], we compare our
method to other visually plausible methods, such as the one
in [RJ07]. Even when using only the surface, our method
produces similar deformations compared to the lattice shape
matching method as shown in Figure 8, but considers the
volume correctly. As the run-times do not differ when using
multiple objects with few particles or one object with many
particles, we compare the run-times of both approaches us-
ing a cube with roughly 30k surface particles for our ap-
proach and 313 ≈ 30k lattice particles, which results in 5402
surface particles. We compare the run-times (see Table 2)
of the unoptimized lattice shape matching (LSM), fast lat-
tice shape matching (FastLSM), naive shape matching for
surfaces on the CPU, our fast shape matching for surfaces
on the CPU and our GPU implementation for different re-
gion sizes ω. The timings from all surface shape matching
methods also contain the times for computing the volume
correction. Even though the FastLSM is faster in theory, our
fast summation technique benefits from caching effects and
thus is equally fast on the CPU. The non-constant run-time
of the FastLSM approach is due to special computations on
the boundary. We also noticed this behavior in the sample
source code available from [RJ07], which unfortunately is
even slower as it is not optimized. The GPU implementation
is, depending on the region size, 11-40 times faster than the
naive surface shape matching and achieves a speedup of fac-
tor 15 compared to both fast summation techniques. Consid-
ering that we need only a fraction of particles on the surface
compared to a volumetric model the actual speedup is even
higher.

We want to mention that our approach needs slightly big-

Method ω = 1 ω = 2 ω = 3 ω = 4 ω = 5

LSM 65.1 240.3 617.9 1436.2 2615.8
FastLSM 46.7 47.9 51.6 57.2 65.2
Naive surface SM 37.3 53.8 82.9 121.5 169.8
Fast surface SM 42.5 46.7 51.6 56.2 62.1
GPU surface SM 3.2 3.6 3.9 4.1 4.2

Table 2: Run-time comparison (in ms) between the differ-
ent shape matching methods for different region sizes ω with
a cube consisting of roughly 30k particles. While both fast
summation techniques have similar run-times, the GPU im-
plementation achieves a speedup of factor 15.

ger region sizes to reproduce the same stiffness as the lattice
based shape matching because of the missing inner parti-
cles. Even though the volume constraint is not momentum
conserving we did not encounter any ghost forces and we
believe that the velocity correction helps to avoid them. All
together our method is not intended for physically correct
simulations but is practical for visually plausible real-time
deformations.

8. Conclusion

We proposed a robust deformation method for incompress-
ible objects. Due to our oscillation-free and collision-aware
volume constraint, it is possible to simulate our models by
purely taking the surface of the object into account. Con-
sidering only the surface eliminates typical problems such
as tetrahedron inversion. Our method can even recover eas-
ily from completely inverted or degenerated states. With our
novel fast summation technique that is designed for an ef-
ficient parallel computation on the GPU, we can robustly
simulate highly detailed surfaces with thousands of parti-
cles, obtaining visually plausible deformations. Comparing
our method to similar geometrically motivated methods, we
obtain a speedup of factor 15. Considering that we only need
a fraction of particles because we do not require any parti-
cles in the interior of the object, the actual speedup is even
higher. In future work we want to integrate a continuous col-
lision detection on the GPU, thus removing the need to copy
data between CPU and GPU.

Acknowledgements

The authors would like to thank the anonymous reviewers
for their valuable feedback, Dieter Finkenzeller for mak-
ing the textures of our demonstration scenes and the Stan-
ford Scanning Repository for the Armadillo model. The
duck model is provided courtesy of Marco Attene by the
AIM@SHAPE Shape Repository.

References
[AHB87] ARUN K. S., HUANG T. S., BLOSTEIN S. D.: Least-

squares fitting of two 3-d point sets. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 9 (1987), 698–700. 4

R. Diziol, J. Bender and D. Bayer / Robust Real-Time Deformation of Incompressible Surface Meshes

[BJ05] BARBIČ J., JAMES D. L.: Real-time subspace integra-
tion for st. venant-kirchhoff deformable models. ACM Trans. on
Graphics 24, 3 (July 2005), 982–990. 2

[BW98] BARAFF D., WITKIN A.: Large steps in cloth simula-
tion. In Proc. of SIGGRAPH 98 (1998), ACM, pp. 43–54. 3

[BWHT07] BARGTEIL A. W., WOJTAN C., HODGINS J. K.,
TURK G.: A finite element method for animating large viscoplas-
tic flow. ACM Trans. on Graph. 26, 3 (July 2007), 16:1–16:8. 3

[CGC∗02] CAPELL S., GREEN S., CURLESS B., DUCHAMP T.,
POPOVIĆ Z.: Interactive skeleton-driven dynamic deformations.
In Proc. of SIGGRAPH 2002 (2002), ACM, pp. 586–593. 2

[DDCB01] DEBUNNE G., DESBRUN M., CANI M.-P., BARR
A. H.: Dynamic real-time deformations using space & time
adaptive sampling. In Proc. of SIGGRAPH 2001 (2001), ACM,
pp. 31–36. 2

[DMSB99] DESBRUN M., MEYER M., SCHRÖDER P., BARR
A.: Implicit fairing of irregular meshes using diffusion and cur-
vature flow. In Proc. of SIGGRAPH 99 (1999), ACM, pp. 317–
324. 7

[DSB99] DESBRUN M., SCHRÖDER P., BARR A.: Interactive an-
imation of structured deformable objects. In Proc. of SIGGRAPH
99 (1999), ACM, pp. 1–8. 2

[GKS02] GRINSPUN E., KRYSL P., SCHRÖDER P.: CHARMS:
a simple framework for adaptive simulation. In Proc. of SIG-
GRAPH 2002 (2002), ACM, pp. 281–290. 2

[GM97] GIBSON S. F., MIRTICH B.: A survey of deformable
modeling in computer graphics. Tech. Rep. TR-97-19, Mit-
subishi Electric Research Lab., Cambridge, MA, 1997. 2

[GVL96] GOLUB G., VAN LOAN C.: Matrix Computations. The
Johns Hopkins University Press, Baltimore, 1996. 4

[HJCW06] HONG M., JUNG S., CHOI M., WELCH S.: Fast
volume preservation for a mass-spring system. IEEE Comput.
Graph. Appl. 26 (2006), 83–91. 1, 2, 6

[Hop96] HOPPE H.: Progressive meshes. In Proc. of SIGGRAPH
96 (1996), ACM, pp. 99–108. 2

[ISF07] IRVING G., SCHROEDER C., FEDKIW R.: Volume con-
serving finite element simulations of deformable models. ACM
Trans. on Graphics 26, 3 (July 2007), 13:1–13:6. 2, 3, 9

[ITF04] IRVING G., TERAN J., FEDKIW R.: Invertible finite ele-
ments for robust simulation of large deformation. In Proc. of the
2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
(2004), Eurographics Association, pp. 131–140. 3

[JP99] JAMES D. L., PAI D. K.: Artdefo: accurate real time
deformable objects. In Proc. of SIGGRAPH 99 (1999), ACM,
pp. 65–72. 2

[KVS99] KOBBELT L., VORSATZ J., SEIDEL H.-P.: Multires-
olution hierarchies on unstructured triangle meshes. Comput.
Geom. Theory and Appl. 14 (1999), 5–24. 8

[MDM∗02] MÜLLER M., DORSEY J., MCMILLAN L., JAGNOW
R., CUTLER B.: Stable real-time deformations. In Proc. of the
2002 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.
(2002), ACM, pp. 49–54. 3

[MHHR07] MÜLLER M., HEIDELBERGER B., HENNIX M.,
RATCLIFF J.: Position based dynamics. Journal of Vis. Com-
mun. and Image Represent. 18 (2007), 109–118. 6

[MHTG05] MÜLLER M., HEIDELBERGER B., TESCHNER M.,
GROSS M.: Meshless deformations based on shape matching.
ACM Trans. on Graphics 24, 3 (July 2005), 471–478. 1, 3, 4

[MKN∗04] MÜLLER M., KEISER R., NEALEN A., PAULY M.,
GROSS M., ALEXA M.: Point based animation of elastic,

plastic and melting objects. In Proc. of the 2004 ACM SIG-
GRAPH/Eurographics Symp. on Comput. Anim. (2004), Euro-
graphics Association, pp. 141–151. 3

[NMK∗05] NEALEN A., MUELLER M., KEISER R., BOXER-
MAN E., CARLSON M.: Physically based deformable models
in computer graphics. In Eurographics: State of the Art Report
(December 2005). 2

[NT98] NEDEL L. P., THALMANN D.: Real time muscle de-
formations using mass-spring systems. In Proc. of the Comput.
Grap. Int. (1998), pp. 156–165. 3

[OH99] O’BRIEN J. F., HODGINS J. K.: Graphical modeling and
animation of brittle fracture. In Proc. of SIGGRAPH 99 (1999),
ACM, pp. 137–146. 2

[RJ07] RIVERS A. R., JAMES D. L.: FastLSM: fast lattice
shape matching for robust real-time deformation. ACM Trans.
on Graphics 26, 3 (July 2007), 82:1–82:6. 2, 5, 6, 9

[SHZO07] SENGUPTA S., HARRIS M., ZHANG Y., OWENS
J. D.: Scan primitives for gpu computing. In Proc. of the
22nd ACM SIGGRAPH/Eurographics Symp. on Grap. Hardware
(2007), Eurographics Association, pp. 97–106. 5, 7

[SOG08] STEINEMANN D., OTADUY M. A., GROSS M.: Fast
adaptive shape matching deformations. In Proc. of the 2008 ACM
SIGGRAPH/Eurographics Symp. on Comput. Anim. (2008), Eu-
rographics Association, pp. 87–94. 2

[TBHF03] TERAN J., BLEMKER S., HING V. N. T., FEDKIW
R.: Finite volume methods for the simulation of skeletal muscle.
In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim. (2003), Eurographics Association, pp. 68–74. 2

[THMG04] TESCHNER M., HEIDELBERGER B., MULLER M.,
GROSS M.: A versatile and robust model for geometrically com-
plex deformable solids. In Proc. of the Comput. Grap. Int. (2004),
pp. 312–319. 3

[TK09] TAKAMATSU K., KANAI T.: Volume-preserving lsm de-
formations. In Proc. of SIGGRAPH Asia Sketches (2009). 3

[TKA10] TWIGG C. D., KAČIĆ-ALESIĆ Z.: Point cloud glue:
constraining simulations using the procrustes transform. In Pro-
ceedings of the 2010 ACM SIGGRAPH/Eurographics Symp. on
Comput. Anim. (2010). 4

[TPBF87] TERZOPOULOS D., PLATT J., BARR A., FLEISCHER
K.: Elastically deformable models. In Computer Graphics (Proc.
of SIGGRAPH 87) (1987), vol. 21, ACM, pp. 205–214. 2

[TW88] TERZOPOULOS D., WITKIN A.: Physically based mod-
els with rigid and deformable components. IEEE Comput.
Graph. Appl. 8 (1988), 41–51. 3

[vFTS06] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Vector
field based shape deformations. ACM Trans. on Graphics 25, 3
(July 2006), 1118–1125. 1

[vFTS08] VON FUNCK W., THEISEL H., SEIDEL H.-P.: Volume-
preserving mesh skinning. In Vision Modeling and Visualization
(2008), pp. 409–414. 3

[WDGT01] WU X., DOWNES M. S., GOKTEKIN T., TENDICK
F.: Adaptive nonlinear finite elements for deformable body simu-
lation using dynamic progressive meshes. In Computer Graphics
Forum (2001), pp. 349–358. 2

