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Abstract

We derive a geometric criterion for the convexity of Powell-Sabin interpolants and
present a multivariate generalization.
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1 Introduction

So far, no construction seems to be known of differentiable, convex, piecewise
polynomial functions over JR? that interpolate any given differentiable convex
functions and their gradients over any given set of interpolation abscissae.

In 1992 Carnicer and Dahmen (Carnicer & Dahmen 1992) made an attempt
to understand under which additional assumptions one can construct a convex
Powell-Sabin interpolant. However, in 1997 Floater (Floater 1997) proved by
a counterexample that the additional assumptions of Carnicer and Dahmen
do not guarantee convexity or concavity, see also Figure 3.

The purpose of this paper is to give a necessary and sufficient condition for the
convexity of the Powell-Sabin interpolant used in (Carnicer, Dahmen 1992).
In Section 2 we will show that the convexity depends simply on whether
two triangles are disjoint. In the Sections 3 and 4 we present a multivariate
generalization of the Powell-Sabin interpolant and of this convexity criterion.
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2 Convexity of Powell-Sabin interpolants

Since a Powell-Sabin interpolant is continuously differentiable (Powell & Sabin
1977), it is convex if all its elements are convex. Hence it suffices to discuss
the construction by Carnicer and Dahmen for a single Powell-Sabin element.
Throughout the paper we will use hollow letters to denote points in IR* (or
later in R") and the same letters in bold and normal face to denote their
abscissae in IR? (or IR"™') and (last co)ordinates, respectively. So let

be three data points in IR sampled from a convex function f and let P; be
the tangent plane of the graph [x" f(x)]" at p;.

As in (Carnicer & Dahmen 1992) we assume that f is well-associated with
the data triangle p;pyps meaning that Py, Py, and Ps intersect in a point
P123 Whose abscissa p,y5 lies inside the triangle p,p,p;. Since f restricted to
any line p;[p, is convex, any two planes P; and P; have a common point p,;
whose abscissa lies between p; and p;. Obviously, not all convex functions are
well-associated with pipzps.

To state our result we need the three intersections t; of the data plane pipsps
with the lines P; Py, which are the intersections of P; and Py, where (1, J, k) is
a cyclic permutation of (1,2, 3). These points t; form the tangent triangle.
It is shown in Figures 1, 2, 3 and 5.

Theorem 2.1. Assume f and the data triangle pipaps are well-associated
and let p(x) be the Powell-Sabin element that is quadratic over each of the siz
triangles p,p;;P1a3, 1 < @ < j < 3, interpolating f and its gradient at p; p,
and ps. This C'-Interpolant p(x) is convez if and only if the data triangle
P1P2P3 lies inside the tangent triangle titots as dlustrated in Figure 8 by two
examples.

Proof:

We need to show that all six quadratic segments of the Powell-Sabin element
lie on oval quadrics. Since a quadric is oval if and only if any tangent plane
intersects the quadric in two complex conjugate lines (see, e.g., (Boehm &
Prautzsch 1994), p. 141), we can use the following property to show convexity.
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Fig. 1. Data triangle in- and outside the tangent triangle, respectively.

A quadric is oval (not oval) if and only if there is a tangent plane and a conic
section on the quadric without (with two) real intersections.

To continue with the proof let Pi93 be the tangent plane of the Powell-Sabin
element p(x) at X = py,5. It passes through the midpoints between p,,5 and
P1,P2 and ps. Thus it is the midplane between p,,; and the data plane pip2zps
and thus parallel to the data plane. This is illustrated in Figure 2.
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Fig. 2. Construction of a Powell-Sabin element for a concave function f.

Further the Powell-Sabin element restricted to any line p,p; lies on two convex
(i.e., not concave) parabolas which are tangent by construction to the midline
Tij between p;; and the line p,p;.



This tangent 7;; is parallel to Pjg3. Therefore both parabolas lie above Pyg3
if and only if the tangent 7;; does so too. If P; M P; is parallel to Pjq3, then
tx is at infinity and the tangent 7;; lies on Pigs. If t;, and p,,3 lie on opposite
sides of the edge p,p; then 7T;; lies below. So, both parabolas do not inter-
sect Pigs in a real point if and only if the edge p,p; separates p,,; and t.
Consequently all six quadratic segments of the Powell-Sabin element are oval
if and only if the triangle p;p2ps lies inside b1 t3t; which concludes the proof. O
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Fig. 3. Powell-Sabin-Interpolants to strictly concave data with “well associated”
tangent planes.

Willemans and Dierckx (Willemans & Dierckx 1994) expressed the convexity
of a general Powell-Sabin element by twelve inequalities to build convex ap-
proximants. Since the convexity of each quadratic segment is characterized by
one inequality, six inequalities would suffice. Moreover for the special situation
of the theorem above we can reduce the number further to three inequalities.

Corollary 2.2. Let d(P;,p;) denote the Euclidean distance between the plane
P; and the point p; and let

ik = d(P,,[F)]) d(Pjv[pk) + d(Plv[F)k) d(/P],[pl) - d(P,,[F)]) d(Pjv[F)i)v



where (1,7,k) is a cyclic permutation of (1,2,3). Then, the tangent triangle
C1Eots contains the data triangle prpaps if and only if gias, ¢231 and g3z are
all positive.

Proof:

Observe that g¢;;; depends linearly on [p;, since the Euclidean distance between
a point and a plane can be expressed by a scalar product. Further, g, 1s zero
for p;, on the edge p,p,; and g(p;) < 0 for p, = b. Hence g, is positive
if and only if the edge p,p; separates p; and t;. The other two inequalities
follow analogously. O

Given a convex triangular net with vertices p,, ¢ = 1,...,n, there is no guar-
antee that well-associated tangent planes P; exist. Moreover, it is not clear
how to find well-associated tangent planes if they exist.

Anyhow, there are simple inequalities which imply or rule out well-associatedness
if satisfied or not satisfied, see (Carnicer & Dahmen ’92). These inequalities
are as follows. Let T := {(7,7,k) | p;p;py is a triangle of the net} and let

Pi(ﬂ) _ _vf(pi) g — P; -

1 f(p;)

denote the equation of the tangent plane at p;, where V f(p,) is the gradient
of f. Then the points p,; and tangent planes P; belong to a convex function if
and only if for all edges p,p; of the triangular net

aij = 73,'([pj) > 0.

Further, they are well associated if and only if for all (¢,7,k) € T
d,’jk = Qg+ Qkar — Qg > 0.
Similarly we can express whether the tangent triangle contains the data trian-

gle. According to Corollary 2.2, the tangent triangle contains the data triangle
if and only if for all (¢,7,k) € T

bijk 1= aijaz + aiaji — agaj >0,

namely b;;i 1s a positive multiple of ¢;;x. Note that a;; depends linearly on P;.
Therefore d;;; and b;j, depend quadratically on the P’s.



Carnicer and Dahmen propose to compute tangent planes P; that minimize
the sum

Z (aij(a — aij)z + aji(a — ij)z + agi(a — aki)z + Sijr(d — dijk)) ;

(i,5,k)€T

where the o’s and ¢’s are certain weights and « and d are some constants.
This sum could be extended by the terms 3;;,(b — b;j ).

3 A multivariate generalization of the Powell-Sabin element

In this section we present a multivariate generalization of the (bivariate)
Powell-Sabin interpolant. And in the next section we derive for this inter-
polant a convexity criterion which generalizes Theorem 2.1.

Given a simplex ¢ in R"™! with vertices p;,...,p, we choose on each face
p;, ---P;, of o, where I := {uy,...,1} C {1,...,n}, some (splitting) point
P, .., - Note that p; , has different notations. Namely for all permutations
(Jis- s dm)of (i1,. .. im) weset p; . =P, . ,and also use the notation p;.

Lemma 3.1. Let S, be the symmetric group of all permutations of (1,...,n)
and let m = (my,...,m,) € S,. Further we denote the tails of m by

I = Ii(m) = {mpy ..y 0}
and the simplez py ...Py, by ox. Then the simplices or, ™ € S, form a
partition of o.

Remark 3.2. Forn = 3 the simplices o, form a Powell-Sabin split of o, see
Figure 4.

P

Fig. 4. A partition of the simplex ¢ for n = 2,3, 4.



Proof:

We prove the lemma by induction over n. For n =2 and n =3 the lemma is
obviously true, see also Figure 4. Next we assume that the lemma holds if o
had only n—1 vertices, where n > 2. Consequently, all simplices py, ...p; ,
™ € 5, where m; is fixed, form a partition of the face p,, ...p,, of o and
the simplices o, form a partition of the simplex o, obtained from o by re-
placing the vertex p, by p;_,. Figure 4 shows for n = 4 the simplices 7,04
and o,, where m; = 4. Since the n simplices oy, ..., 0, form a partition of o,
the lemma also holds for a simplex with n vertices. This concludes the proof.0

Next we show that there is a unique C''-function p(x) over o that is quadratic
over each simplex o, and interpolates any function f and its gradients at the
n vertices py,...,p, of o.

We will use the Bézier representation of p(x) . So let A be the set of all
multiindices § = (¢1,...,1,) € {0,1,2}", where [i| = ¢; + ... + 1, = 2 and let
b,; be the Bézier ordinates of p(x) over o, . This means that

p(x) = D b B (u),

feA

where

are the quadratic Bernstein polynomials and wuq,...,u, are the barycentric
coordinates of x with respect to p; ... py, -

n

Further let b, = [bij b.i]' be the Bézier points of the graph [x' p(x)]".
Their abscissae are given by, see e.g. (Prautzsch, Boehm ’99, 10.3 and 19.3),

b.; =

N |

n
> P, -
k=1

Note that either two coordinates 7j are one or one 1, equals two while all other
1} are zero.

Lemma 3.3. Gwen a differentiable function f over o there are unique ordi-
nates by such that the piecewise quadratic p(x) is differentiable and interpo-
lates f and its derivatives at the vertices of o .



Proof:
We prove the lemma by induction over n. For n =2, 3 the lemma is well-known.

So we assume that the lemma holds for any n—1 dimensional simplex, where
n>3.

Hence we can determine all ordinates ¢, 3, where 7; = 0, over the faces of o
such that p(x) restricted to any face of o satisfies the lemma.

Then we set all ordinates by 10,01 so that p(x) has the same derivatives as f(x)
at p,, = bro.02. Finally we choose all remaining ordinates b_s,m € S,,,1 € A,
where 7; > 1, such that all inner points b, lie on the hypérplane spanned
by the n points br10.01,m = 1,...,n . Hence all quadratic segments of p(x)
have C'-contact at all points p;, I C {1,...,n} .

Therefore, all derivatives of p(x) , which are linear over each subsimplex o,
are continuous. This concludes the proof. a

Consider the piecewise quadratic interpolant p(x) over the simplices o, where
7 = 1. The derivatives of p(x) are continuous. In particular, this is true over
the edge p; P .- Hence any second derivative of p(x) with respect to the
direction p; ,,—P, _, and an arbitrary second direction is also continuous over
this edge and thus constant rather than piecewise constant. Consequently the
directional derivative of p(x) with respect to the difference p; ,, — py ,, is

linear over the entire face p,...p,, rather than piecewise linear.

Thus we obtain the following result:

Corollary 3.4. Let p(x) denote the piecewise quadratic C*'-interpolant con-
structed as in Lemma 3.8 for the same function f over an adjacent simplex
o with vertices py,...,P,, where p, = pp for k > 2, py , = Py, and
Pi ns Po.ns P are collinear. Then p(x) and p(x) have C'-contact over

the common face py...p,, -

4 The multivariate convexity criterion

Let o be a simplex in R"™! with vertices py,...,p, andleto;, I C {1,...,n},
be the face of o with vertices p,,2 € I . Further let f be a differentiable con-
vex function defined on o and let P; be the tangent hyperplane in IR" of the



graph [x' f(x)]" at x = p; . In the sequel we drop the suffix “hyper”.

We assume that the tangent planes P; are in general positon meaning that for
all subsets I C {1,...,n} there is exactly one point p; in all planes P;, 1 € I,
whose abscissa, py, lies in the affine hull of o7;.

Hence the planes P; partition IR™ into 2" regions in the same way as the n
coordinate planes z; = 0 do. One of these regions, we call it &, contains all
the data points p, = [p,’ f(p,)]’. It is the intersection of all half spaces H,;
containing the points on or above P;. The infinite pyramid & has the apex
P, and n edges, where each edge lies in all but one of the half spaces H,.
To prove the convexity criterion below in Theorem 4.2 we need the following
fact:

Lemma 4.1. If p, , lies in the face oy ., then p, , lies on the edge Hy N
PoN...0N P, of S as illustrated in Figure 5.

Proof:

Let e1,...,e, be positive or negative multiples of the n directions v, :=
P{i..o)\{i} — Pl..n such that

S = {p., + D €€l er,... 6 >0}

=1

We need to show that e; is a positive multiple of v;.

Let u; :=p;, — p;_,,- Since p; € S, there is a non-negative matrix U such that

[Up...up] = [er...e,]U.

Further, since p, ,, i1s a convex combination of p,...p, , there is a non-
negative column ¢ such that

vi=[u;...u,lc
=ler...e,)Uc.

Hence vy and vy are positive multiples of e; and ey, respectively, which con-
cludes the proof. a
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Fig. 5. The Pyramid §.

If all points p;, I C {1,...,n}, lie in the interior of the corresponding simplex
face oy, then we call f and o well-associated. Note that not all convex func-
tions are well-associated with o.

Finally let t = [t! ¢;]' be the intersection of the n — 1 hyperplanes P;, j # 1,
with the data plane p, ...p,. We call the simplices t; ...t, and p, ... p, the
tangent and data simplex respectively.

With these definitions the generalization of Theorem 2.1 is straightforward:

Theorem 4.2. Assume f and o are well-associated and let p(x) be the
piecewise quadratic interpolant to f constructed in Lemma 3.3 with respect
to the above splitting points p;. Then p(x) is convex if and only if p(x) is
convez over all faces or,|I| = n—1, and the tangent simplex contains the data
simplex.

Remark 4.3. Ifn =2, then o is well-associated with every convexr function
f. Further, the tangent simplex contains the data simplexr and the univariate
interpolant p(x) is convex over the end points of o. Hence p(x) is always con-
vex for all convexr functions f.

Consequently, if n = 3, then p(x) is convex over all edges oy, |I| =n —1 for
all convezx functions f. Therefore Theorem 2.1 needs one assumption less than

Theorem 4.2.
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Proof of Theorem 4.2:

A function is convex if and only if its restriction to any line is convex. Since
a quadratic polynomial has constant second derivatives, it is convex if its re-
strictions to all lines through a fixed point are convex.

Hence a quadratic polynomial q(x) is convex if and only if its restriction to
any hyperplane H is conver and lies above the tangent plane of ¢(x) at some
point not in H.

Now consider, for example, the subsimplex oy _,, and let ¢(x) be the quadratic
polynomial that equals the interpolant p(x) over oy, ,. Due to the construc-
tion of p(x) the tangent plane P; _, of p(x) at x = p; ,, is the midplane
between the point p, ,, and the data plane p,...p,.

Similarly the tangent plane at p, ,, of ¢(x) and p(x) restricted to oy, is the
midplane between p, , and the plane p,...p,. It is parallel to the tangent
plane Py, and lies above Py _,, if and only if p, , separates p, , and by,
the intersection of the line P, N ... N P, with the data plane. Note that both
Py, and p, ,, lie below the data plane. Now, as a consequence of Lemma
4.1, q(x) is convex if and only if t; lies on an edge of the pyramid S.

Analogous properties hold for the other quadratic segments of the interpolant
p(x) . Thus p(x) is convex if and only if the intersection of S with the data
plane is the tangent simplex bty ...G,.

This finishes the proof since § and the data plane contain ¢ and since the
tangent simplex always lies in one of the 2" disjoint pyramids formed by the
planes P;. a

The convexity criterion can also be expressed by n inequalities which we have
seen already in the bivariate case.

Corollary 4.4. Let d;; denote the Euclidean distance between the plane P;
and the point p; and let D be the n X n-matriz [d;]?,_,. Further let A; and
B; denote the matrices obtained from the n x n-matriz [di;]?,_, by replacing
the i-th row by the row [1 ... 1] or by deleting the i-th row and i-th column,
respectively.

If f and o are well-associated, then the tangent simplex contains the data
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simplex if and only if for all 1 =1,...,n

gi = det A; - det B; < 0.

Proof:
The functions g; depend linearly on p,; since the Euclidean distance between
a point and a plane can be expressed by a scalar product, and it holds

0 for[pi:[pjaj?éi
(det B;)? for p; = L.

gi =

Since D is the product of two matrices with full rank n,

t

the submatrices B; are regular. So g, is negative if and only if p, and t; lie on
opposite sides of the face oy n1\(;}. As we have seen in the proof of Theorem
4.2 this is all we need to show. a
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