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Abstract. Originally, Tchebycheffian B-splines have been defined by
generalized divided differences. In this paper, we define Tchebycheffian
B-splines by integration. Based upon this definition, all basic algorithms
for Tchebycheffian splines can be derived in a straightforward manner.
As an example, a knot insertion algorithm for Tchebycheffian splines is
constructed.

§1. Introduction

The class of Tchebycheffian splines contains many different kinds of splines:
for example B-splines, exponential splines, and hyberbolic splines, see [11].
Algorithms for Tchebycheffian splines have been constructed by generalized
divided differences, see e.g. [5], by generalized polar forms [8,6], and by gen-
eralized de-Boor-Fix dual functionals [1]. A fourth possibility based upon
a new construction method for Tchebycheffian B-splines is presented in this
paper. This construction method, which can be considered as a generalized
convolution having its origin in the derivative formula for B-splines, makes it
possible to derive all basic algorithms for Tchebycheffian splines in a straight-
forward elementary manner [2]. In this paper, we will present a knot insertion
algorithm for Tchebycheffian splines to illustrate the method.

§2. Definition of Basis Splines

One can introduce ordinary B-splines by their derivative formula and derive
all further properties from this definition [9]. It is also possible to construct
exponential B-splines of arbitray order by this method [4]. We will use this
approach with a simple modification and get a much more general class of
splines. In the following section, we will show that this class contains Tcheby-
cheffian splines.

First, let us recall some basic concepts from analysis. A function f: IR —
R := RU{=+} is called locally integrable, abbreviated f € Ly, if f is
Lebesgue integrable over every compact interval J with J C R, see [12]. The
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space Ly, 1s a function algebra: with f,¢ € Lj,. and A € IR, the functions
f+g, Af, and f - g belong to L,.. A locally integrable function is called
integral-positive if the integral

/J flz)de

is positive for every compact interval J with positive length. Further, a knot
sequence 1s a non-decreasing sequence of numbers. With these concepts we
are able to construct certain basis splines:

Definition 1. Let t = (¢;)iez be a knot sequence and w = (wy,...,wy) be
a sequence of integral-positive functions. Then the basis splines Al(z) =
AM(x;t,w) of order n + 1 over t with respect to w are recursively defined by

(0)
0 L wo(l'), ifti <z < ti—l—l;
Ai(z) = {0, otherwise,

(1)

x

(o) imwn(o) [ (A el - AT ) el dy
where a?_l = f_oooo A?_l(y) dy is the area ofA;‘_1 and the following rule
is used if t; = tj41p:

v 0, ifz<t;
n—1 n—1 o 9 Jo
/_OOAJ (y)/oj ™ dy = {1, ifa >t

Example 2. If we choose wo(x) = wi(x) = -+ = wyp(x) = 1, we obtain
B-splines, see [9].

Next, we state some properties of the basis splines A} which can be verified
by straightforward induction. The details and further properties are given
in [2].

Positivity. For t; < t;4,41 the area o' of the basis spline A? is positive.
Hence, the basis splines in Definition 1 are well-defined. Moreover, the integral

/JAy(x)dx

is positive for every interval J with positive length and with J C [¢;,t;4541]-
For t; = t; {41 the basis spline A7 is zero.
Local Support. If t; < t;4,41, the support of A" is the interval [t;,titny1].

7

Basis Property. The basis splines A7, A%, ,,..., A}, are linearly indepen-
dent over any non-empty interval (#;4p, titnt1)-

Remark 3. It is possible to replace the Lebesgue integral in Definition 1 by
a Lebesgue-Stieltjes integral

x

A7(x) 1= w(x) / () dou(y),

—
where o, is a locally bounded, strictly increasing, and right-continuous func-
tion.
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§3. Tchebycheffian Splines

Let us now examine what kinds of basis splines can be constructed by Defini-
tion 1. To do this, we repeat the definition of Tchebycheffian splines given in
the book of Schumaker [11].

Let I = [a,b] be a compact subinterval of R and let (ug,...,u,) be a
sequence of functions in C™(I). Then (ug,...,u,)is called an Extended Com-
plete Tchebycheff system on I, short ECT-system, if for all £k =0,...,n and
and each non-decreasing sequence (tg, ..., t;) of numbersin I the determinant

det <[Dd"u]‘(ti)] f,j=0>

is positive, where
di:=max{r|t;=-=t;_, }.

A linear space is called an ECT-space on I if it has a basis forming an
ECT-system on [.

Definition 4. Let I = [a,b] be a compact interval, let U be an (n + 1)-
dimensional ECT-space on I, and let t = (g, ..., tm4n+1) be a knot sequence.
Supposety =t, = a, tyq41 = tmgn+1 = b, and {; < n+1 forn < 1 < m, where
(; denotes the multiplicity of the knot t; in t. Then a function s:[a,b) — R is
called a Tchebycheffian spline, abbreviated s € S(U,t) if s agrees on every
non-empty knot interval [t;,t;11) with a function in U and if s € C"7%(¢;)
for any knot t;, where n <1 < m.

Theorem 5. Every space S(U,t) of Tchebycheffian splines has a basis of
basis splines Ay, ..., Ay, where the A} are constructed by Definition 1.

Proof: Let (ug,...,uy) be an ECT-system for U. A theorem in [3, p. 379]
says that every ECT-system (ug,...,u,) can be written as iterated integrals
of positive weight functions w; € C'*:

ug(x) = wp()

ur(x) = wn(:z;)/ Wn—1(8$p—1)dsn_1

a

un(:zj)‘: wn(:zj)/ wn_l(sn_l)---/a81 wo(s0) dsn_r - - dso.

Hence, the basis splines A, ..., A” over t with respect to w = (wq, ..., wy)

belong to S(U,t). Since the dimension of S(U,t) is m + 1, see [11, p. 378],

the assertion follows form the basis properties of the basis splines A7. W

It is also possible to produce non-Tchebycheffian B-splines with Defini-

tion 1. Consider the functions ug(z) = 1, uy(z) = 22'/%, us(z) = %:1;3/2,

and us(z) = £2°/? with = € [0,1] as examined in [10]. They do not span an
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ECT-system since u; is not differentiable at * = 0. However, the correspond-
ing weight functions ws(x) = wi(x) = we(x) = 1 and wq(x) = = 1/2
Lebesgue integrable and positive on [0, 1], so the construction of basis splines
with Definition 1 is feasible.

are

§4. Knot Insertion

Let t be a knot sequence, and let w be a sequence of integral-positive func-
tions. A spline s over t with respect to w is defined as a linear combination
of the basis splines A?(x) = A(x;t, w), ie.,

s(x) = Z c;AM(x), where ¢; € R?.

7

The points c¢; are called control points. They form the control polygon
of s.

We want to construct a knot insertion algorithm for these splines. Let
t € R be a number occuring with multiplicity ¢ in t = (¢;);ez. If # is not
contained in t, we set ¢ := 0. Let r be the number with t, < t < trgr. If tis
inserted in t, we obtain the refined knot sequence t = (t:)iem where

~

1 ife=r+1,

t; ife<r+1,
]
tioqg He>r4+1.

We write t = t[f] to indicate that t is obtained by inserting 7 into t.

Theorem 6. Let A? be the basis splines over t with respect to w, and let
B?(-) = A"(-;t,w) be the basis splines over the refined knot sequence t = t[#]
with respect to w. Then there exist numbers A\ € IR and p' € R with

Al =N B+ pi Bl (1)

Proof: We show the theorem by induction. Let r be such that ¢, < t < trgis
and let ¢ be the multiplicity of £ in t. For n < ¢, we obtain from Definition 1

B? ife <,
A? =S B+ Bp, ifi=r,
M if e >r.
Thus equation (1) holds for
n. 1 ife<r, n._ JO i<,
Al '_{0 i, dom '_{1 i 0> .

Suppose n > (. Let a?_l and ﬂ?_l be the areas of A;‘_l and B;‘_l respec-

tively, and assume t; < tiy, and ti41 < tipner so that o1 and oz?_i__ll do

?
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not vanish. Suppose for the induction that there are numbers /\" ! and /,L" !

such that
n—1 n—1pn—1 n—1npn—1
ATt =rmipr Tttt (2)
Using this expression (2) for a substitution in the definition of A? gives

x

A =) [ (OB )+ T B ) far

(A?HIB?HI( )+ /~Lz+ 13?4—2 (y )) /O‘z+1 }

Applying Definition 1 to B}' and B}, , we obtain

" mn— 6 " " 61 "
Ai(“’)—/\ ! B ( )‘|’/~Lz+11 :—21314-1( )

az z—l—l
n—1 n—1on—1 n—1 z
X AT B /\z—l—l /“Lz—l—l 514—2 1
+ ;—1 + 2—1 Zn—l ~ Taa wn(x) B?+1 (y) dy.
&, &, 51‘4—1 X4 q z—l—l 514—1 —oo

The last term in this equation vanishes since integrating equation (2) gives
n—1 _ \n—1,on—1 n—1 on—1
S T S

Hence equation (1) is valid for

n—1
n— 16 n.,_  n— 161—1—2
A = A n—1 and Hi 2= Hip1 -1~
a; i+1

A similar computation gives

1 Bl -|—2
Af =1 and  pf = p T for t; = tign < titnt1
i+1

and

n—
/\n e /\n—l 61
T T 7 n—1

x;

and p; =1 for t; < tit1 = tifnt1-
The case t; = t;1 41 1s trivial. W

The proof of Theorem 6 shows that the numbers AT and p' are as follows:

Corollary 7. Let o]" and 3]" be the areas of A]" and B]", respectively. Then
the numbers A7 and p}' in Theorem 6 can be computed by

1 ifi<r—n+{,
/\n:{Hm {+r— z(ﬂm/a ) 1fr—n‘|‘£<l§7“,

0 ife>r,
M?:l_/\?_H

where r is such that t, <t < t,41 and ( is the multiplicity of t in t.

If we apply Theorem 6 to linear combinations of the basis splines A%, we
obtain the following knot insertion algorithm:
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Fig. 1. Generating a cup by subdivision.

Algorithm 8 (Knot Insertion). Every splines = > .c;A' over t can be
written as a splines = 3. d; B over t[t] where the control points d; are given
by

d; =(1—=A)ci1 + Alei, AP as in Corollary 7.

Algorithm 8 implies that knot insertion is a corner cutting algorithm,
see [7] for a detailed description of corner cutting algorithms. With a knot
insertion algorithm it is easy to derive subdivision algorithms. For example,
if the functions we(x) = x(1 — ) and wi(x) = wa(x) = 1 defined on the
interval [0, 1] are periodically continued to IR, we can construct a local corner
cutting algorithm by repeated knot insertion which produces C?-curves with
flat points, see [2] for full details. Also, by forming tensor products and
introducing special rules for non-quadrilateral meshes, we can extend this
local corner cutting algorithm to control nets of arbitrary topology, see Fig. 1
for an illustration.
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