Curves and Surfaces in CAD Exercises

Homework Sheet 2

Exercise 2.1 (5 Points)

The Bernstein operator \mathcal{B} assigns to a function f on $[0,1]$ the polynomial

$$
\mathcal{B}[f](t):=\sum_{i=0}^{n} f(i / n) B_{i}^{n}(t) .
$$

Prove that if f is a polynomial of degree $m \leq n$, then $\mathcal{B}[f]$ is a polynomial of degree m.

Exercise 2.2 (4 Points)

Prove that the i th forward difference satisfies

$$
\triangle^{i} \mathbf{b}_{0}=\sum_{k=0}^{i}\binom{i}{k}(-1)^{i-k} \mathbf{b}_{k} .
$$

Exercise 2.3 (6 Points)

Let $\mathbf{b}_{0}=\left[\begin{array}{ll}2 & 0\end{array}\right]^{\mathrm{t}}, \mathbf{b}_{1}=\left[\begin{array}{ll}1 & 2\end{array}\right]^{\mathrm{t}}, \mathbf{b}_{2}=\left[\begin{array}{ll}4 & 3\end{array}\right]^{\mathrm{t}}$ be the Bézier points of a curve $\mathbf{b}(u)$ with respect to the interval $[0,1]$.

1. Determine the Bézier representation of $\mathbf{b}(u)$ with respect to the interval $[1,3]$.
2. Determine the monomial representation of $\mathbf{b}(u)$.
3. Determine the Bézier representation of $\mathbf{b}(u)$ of degree 3 with respect to the interval $[0,1]$.

Exercise 2.4 (5 Points)

Let $\mathbf{b}(t)=\sum_{i=0}^{3} \mathbf{b}_{i} B_{i}^{3}(t)$ be a planar cubic Bézier curve with respect to $[0,1]$, where

$$
\mathbf{b}_{0}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

For which \mathbf{b}_{3} does \mathbf{b} have a cusp, that is, $\dot{\mathbf{b}}(\hat{t})=\mathbf{0}$ for some $\hat{t} \in[0,1]$?

Due Date: Friday, November 3, 2017, before the tutorial.

