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Abstract

We derive a geometric criterion for the convexity of Powell�Sabin interpolants and
present a multivariate generalization�
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� Introduction

So far� no construction seems to be known of di�erentiable� convex� piecewise
polynomial functions over IR� that interpolate any given di�erentiable convex
functions and their gradients over any given set of interpolation abscissae�

In ���� Carnicer and Dahmen �Carnicer � Dahmen ����� made an attempt
to understand under which additional assumptions one can construct a convex
Powell	Sabin interpolant� However� in ���
 Floater �Floater ���
� proved by
a counterexample that the additional assumptions of Carnicer and Dahmen
do not guarantee convexity or concavity� see also Figure ��

The purpose of this paper is to give a necessary and su�cient condition for the
convexity of the Powell	Sabin interpolant used in �Carnicer� Dahmen ������
In Section � we will show that the convexity depends simply on whether
two triangles are disjoint� In the Sections � and  we present a multivariate
generalization of the Powell	Sabin interpolant and of this convexity criterion�
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� Convexity of Powell�Sabin interpolants

Since a Powell	Sabin interpolant is continuously di�erentiable �Powell � Sabin
��

�� it is convex if all its elements are convex� Hence it su�ces to discuss
the construction by Carnicer and Dahmen for a single Powell	Sabin element�
Throughout the paper we will use hollow letters to denote points in IR� �or
later in IRn� and the same letters in bold and normal face to denote their
abscissae in IR� �or IRn��� and �last co�ordinates� respectively� So let

pi �

�
��pi

pi

�
�� ��

�
�� pi

f�pi�

�
�� � i � �� �� ��

be three data points in IR� sampled from a convex function f and let Pi be
the tangent plane of the graph �xt f�x��t at pi�

As in �Carnicer � Dahmen ����� we assume that f is well�associated with
the data triangle p�p�p� meaning that P�� P�� and P� intersect in a point
p��� whose abscissa p��� lies inside the triangle p�p�p�� Since f restricted to
any line pipj is convex� any two planes Pi and Pj have a common point pij

whose abscissa lies between pi and pj� Obviously� not all convex functions are
well	associated with p�p�p��

To state our result we need the three intersections ti of the data plane p�p�p�

with the lines PjPk� which are the intersections of Pj and Pk� where �i� j� k� is
a cyclic permutation of ��� �� ��� These points ti form the tangent triangle�
It is shown in Figures �� �� � and ��

Theorem ���� Assume f and the data triangle p�p�p� are well�associated
and let p�x� be the Powell�Sabin element that is quadratic over each of the six
triangles pipijp���� � � i � j � �� interpolating f and its gradient at p��p�
and p�� This C��Interpolant p�x� is convex if and only if the data triangle
p�p�p� lies inside the tangent triangle t�t�t� as illustrated in Figure � by two
examples�

Proof�

We need to show that all six quadratic segments of the Powell	Sabin element
lie on oval quadrics� Since a quadric is oval if and only if any tangent plane
intersects the quadric in two complex conjugate lines �see� e�g�� �Boehm �
Prautzsch ����� p� ���� we can use the following property to show convexity�
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Fig� �� Data triangle in� and outside the tangent triangle� respectively�

A quadric is oval �not oval� if and only if there is a tangent plane and a conic
section on the quadric without �with two� real intersections�

To continue with the proof let P��� be the tangent plane of the Powell	Sabin
element p�x� at x � p���� It passes through the midpoints between p��� and
p��p� and p�� Thus it is the midplane between p��� and the data plane p�p�p�

and thus parallel to the data plane� This is illustrated in Figure ��
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Fig� �� Construction of a Powell�Sabin element for a concave function f �

Further the Powell	Sabin element restricted to any line pipj lies on two convex
�i�e�� not concave� parabolas which are tangent by construction to the midline
Tij between pij and the line pipj �

�



This tangent Tij is parallel to P���� Therefore both parabolas lie above P���

if and only if the tangent Tij does so too� If Pi u Pj is parallel to P���� then
tk is at in�nity and the tangent Tij lies on P���� If tk and p��� lie on opposite
sides of the edge pipj then Tij lies below� So� both parabolas do not inter	
sect P��� in a real point if and only if the edge pipj separates p��� and tk�
Consequently all six quadratic segments of the Powell	Sabin element are oval
if and only if the triangle p�p�p� lies inside t�t�t� which concludes the proof� �
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Fig� �� Powell�Sabin�Interpolants to strictly concave data with �well associated�
tangent planes�

Willemans and Dierckx �Willemans � Dierckx ���� expressed the convexity
of a general Powell	Sabin element by twelve inequalities to build convex ap	
proximants� Since the convexity of each quadratic segment is characterized by
one inequality� six inequalities would su�ce� Moreover for the special situation
of the theorem above we can reduce the number further to three inequalities�

Corollary ���� Let d�Pi�pj� denote the Euclidean distance between the plane
Pi and the point pj and let

gijk �� d�Pi�pj� d�Pj�pk� � d�Pi�pk� d�Pj �pi�� d�Pi�pj� d�Pj�pi��





where �i� j� k� is a cyclic permutation of ��� �� ��� Then� the tangent triangle
t�t�t� contains the data triangle p�p�p� if and only if g���� g��� and g��� are
all positive�

Proof�

Observe that gijk depends linearly on pk since the Euclidean distance between
a point and a plane can be expressed by a scalar product� Further� gijk is zero
for pk on the edge pipj and g�pk� � � for pk � tk� Hence gijk is positive
if and only if the edge pipj separates pk and tk� The other two inequalities
follow analogously� �

Given a convex triangular net with vertices pi� i � �� � � � � n� there is no guar	
antee that well	associated tangent planes Pi exist� Moreover� it is not clear
how to �nd well	associated tangent planes if they exist�

Anyhow� there are simple inequalitieswhich imply or rule out well	associatedness
if satis�ed or not satis�ed� see �Carnicer � Dahmen ����� These inequalities
are as follows� Let T �� f�i� j� k� jpipjpk is a triangle of the netg and let

Pi�x� �

�
���rf�pi�

�

�
��
�
B�x �

�
�� pi

f�pi�

�
��
�
CA � �

denote the equation of the tangent plane at pi� where rf�pi� is the gradient
of f � Then the points pi and tangent planes Pi belong to a convex function if
and only if for all edges pipj of the triangular net

aij �� Pi�pj� � ��

Further� they are well associated if and only if for all �i� j� k� � T

dijk �� aijajk � aikakj � akjajk � ��

Similarly we can express whether the tangent triangle contains the data trian	
gle� According to Corollary ���� the tangent triangle contains the data triangle
if and only if for all �i� j� k� � T

bijk �� aijajk � aikaji � aijaji � ��

namely bijk is a positive multiple of gijk� Note that aij depends linearly on Pi�
Therefore dijk and bijk depend quadratically on the P�s�
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Carnicer and Dahmen propose to compute tangent planes Pi that minimize
the sum

X
�i�j�k��T

	
�ij�a� aij�

� � �jk�a� ajk�
� � �ki�a� aki�

� � �ijk�d� dijk�


�

where the ��s and ��s are certain weights and a and d are some constants�
This sum could be extended by the terms �ijk�b� bijk��

� A multivariate generalization of the Powell�Sabin element

In this section we present a multivariate generalization of the �bivariate�
Powell	Sabin interpolant� And in the next section we derive for this inter	
polant a convexity criterion which generalizes Theorem ����

Given a simplex � in IRn�� with vertices p�� � � � �pn we choose on each face
pi�

� � �pim
of �� where I �� fi�� � � � � img � f�� � � � � ng� some �splitting� point

pi����im
� Note that pi����im

has di�erent notations� Namely for all permutations
�j�� � � � � jm� of �i�� � � � � im� we set pj����jm

� pi� ���im
� and also use the notation pI �

Lemma ���� Let Sn be the symmetric group of all permutations of ��� � � � � n�
and let � � ���� � � � � �n� � Sn� Further we denote the tails of � by

Ik �� Ik��� �� f�k� � � � � �ng

and the simplex pI�
� � �pIn

by ��� Then the simplices ��� � � Sn form a
partition of ��

Remark ���� For n � � the simplices �� form a Powell�Sabin split of �� see
Figure ��
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Fig� �� A partition of the simplex � for n 	 �� �� ��
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Proof�

We prove the lemma by induction over n� For n�� and n� � the lemma is
obviously true� see also Figure � Next we assume that the lemma holds if �
had only n�� vertices� where n � �� Consequently� all simplices pI�

� � �pIn
�

� � Sn where �� is �xed� form a partition of the face p��
� � �p�n

of � and
the simplices �� form a partition of the simplex ��� obtained from � by re	
placing the vertex p��

by p����n� Figure  shows for n �  the simplices �� ��
and ��� where �� � � Since the n simplices ��� � � � � �n form a partition of ��
the lemma also holds for a simplex with n vertices� This concludes the proof��

Next we show that there is a unique C�	function p�x� over � that is quadratic
over each simplex �� and interpolates any function f and its gradients at the
n vertices p�� � � � �pn of ��

We will use the B�ezier representation of p�x� � So let � be the set of all
multiindices i � �i�� � � � � in� � f�� �� �gn� where jij � i� � � � � � in � � and let
b�i be the B�ezier ordinates of p�x� over �� � This means that

p�x� �
X
i��

b�i B
�
i �u��

where

B�
i �u� �

�
n

i

�
ui �

n�

i�� � � � in�
ui�
� � � � uin

n

are the quadratic Bernstein polynomials and u�� � � � � un are the barycentric
coordinates of x with respect to pI�

� � �pIn
�

Further let b��i � �bt
��i b��i�

t be the B�ezier points of the graph �xt p�x��t�
Their abscissae are given by� see e�g� �Prautzsch� Boehm ���� ���� and ������

b��i �
�

�

nX
k��

ikpIk
�

Note that either two coordinates ik are one or one ik equals two while all other
ik are zero�

Lemma ���� Given a di�erentiable function f over � there are unique ordi�
nates b�i such that the piecewise quadratic p�x� is di�erentiable and interpo�
lates f and its derivatives at the vertices of � �






Proof�

We prove the lemma by induction over n� For n��� � the lemma is well	known�
So we assume that the lemma holds for any n�� dimensional simplex� where
n���

Hence we can determine all ordinates q��i� where i� � �� over the faces of �
such that p�x� restricted to any face of � satis�es the lemma�

Then we set all ordinates b��������� so that p�x� has the same derivatives as f�x�
at p�n

� b��������� Finally we choose all remaining ordinates b
��i� � � Sn� i � ��

where i� � �� such that all inner points b��i lie on the hyperplane spanned
by the n points b���������� �� � �� � � � � n � Hence all quadratic segments of p�x�
have C�	contact at all points pI � I � f�� � � � � ng �

Therefore� all derivatives of p�x� � which are linear over each subsimplex ���
are continuous� This concludes the proof� �

Consider the piecewise quadratic interpolant p�x� over the simplices ��� where
�� � �� The derivatives of p�x� are continuous� In particular� this is true over
the edge p����np����n� Hence any second derivative of p�x� with respect to the
direction p����n�p����n and an arbitrary second direction is also continuous over
this edge and thus constant rather than piecewise constant� Consequently the
directional derivative of p�x� with respect to the di�erence p����n � p����n is
linear over the entire face p� � � �pn rather than piecewise linear�

Thus we obtain the following result�

Corollary ���� Let �p�x� denote the piecewise quadratic C��interpolant con�
structed as in Lemma ��� for the same function f over an adjacent simplex
�� with vertices �p�� � � � � �pn� where pk � �pk for k � �� p����n � �p����n and
p����n� p����n� �p����n are collinear� Then p�x� and �p�x� have C��contact over
the common face p� � � �pn �

� The multivariate convexity criterion

Let � be a simplex in IRn�� with vertices p�� � � � �pn and let �I � I � f�� � � � � ng�
be the face of � with vertices pi� i � I � Further let f be a di�erentiable con	
vex function de�ned on � and let Pi be the tangent hyperplane in IRn of the

�



graph �xt f�x��t at x � pi � In the sequel we drop the su�x �hyper��

We assume that the tangent planes Pi are in general positon meaning that for
all subsets I � f�� � � � � ng there is exactly one point pI in all planes Pi� i � I�
whose abscissa� pI � lies in the a�ne hull of �I �

Hence the planes Pi partition IRn into �n regions in the same way as the n

coordinate planes xi � � do� One of these regions� we call it S� contains all
the data points pi � �pi

t f�pi��
t� It is the intersection of all half spaces Hi

containing the points on or above Pi� The in�nite pyramid S has the apex
p����n and n edges� where each edge lies in all but one of the half spaces Hi�
To prove the convexity criterion below in Theorem �� we need the following
fact�

Lemma ���� If p����n lies in the face �����n� then p����n lies on the edge H� �
P� � � � � � Pn of S as illustrated in Figure ��

Proof�

Let e�� � � � � en be positive or negative multiples of the n directions vi ��
pf����ngnfig � p����n� such that

S � fp����n �
nX

i��

	ieij 	�� � � � � 	n � �g�

We need to show that e� is a positive multiple of v��

Let ui �� pi � p����n� Since pi � S� there is a non	negative matrix U such that

�u� � � � un� � �e� � � � en�U�

Further� since p����n is a convex combination of p� � � �pn � there is a non	
negative column c such that

v�� �u� � � �un�c

� �e� � � � en�Uc�

Hence v� and v� are positive multiples of e� and e�� respectively� which con	
cludes the proof� �
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If all points pI � I � f�� � � � � ng� lie in the interior of the corresponding simplex
face �I � then we call f and � well�associated� Note that not all convex func	
tions are well	associated with ��

Finally let t � �tti ti�
t be the intersection of the n � � hyperplanes Pj� j �� i�

with the data plane p� � � �pn� We call the simplices t� � � � tn and p� � � �pn the
tangent and data simplex respectively�

With these de�nitions the generalization of Theorem ��� is straightforward�

Theorem ���� Assume f and � are well�associated and let p�x� be the
piecewise quadratic interpolant to f constructed in Lemma ��� with respect
to the above splitting points pI � Then p�x� is convex if and only if p�x� is
convex over all faces �I � jIj � n��� and the tangent simplex contains the data
simplex�

Remark ���� If n � �� then � is well�associated with every convex function
f � Further� the tangent simplex contains the data simplex and the univariate
interpolant p�x� is convex over the end points of �� Hence p�x� is always con�
vex for all convex functions f �

Consequently� if n � �� then p�x� is convex over all edges �I � jIj � n� � for
all convex functions f � Therefore Theorem 	�
 needs one assumption less than
Theorem ��	�

��



Proof of Theorem ����

A function is convex if and only if its restriction to any line is convex� Since
a quadratic polynomial has constant second derivatives� it is convex if its re	
strictions to all lines through a �xed point are convex�

Hence a quadratic polynomial q�x� is convex if and only if its restriction to
any hyperplane H is convex and lies above the tangent plane of q�x� at some
point not in H�

Now consider� for example� the subsimplex �����n and let q�x� be the quadratic
polynomial that equals the interpolant p�x� over �����n� Due to the construc	
tion of p�x� the tangent plane P����n of p�x� at x � p����n is the midplane
between the point p����n and the data plane p� � � �pn�

Similarly the tangent plane at p����n of q�x� and p�x� restricted to �����n is the
midplane between p����n and the plane p� � � �pn� It is parallel to the tangent
plane P����n and lies above P����n if and only if p����n separates p����n and t��
the intersection of the line P� � � � � � Pn with the data plane� Note that both
p����n and p����n lie below the data plane� Now� as a consequence of Lemma
��� q�x� is convex if and only if t� lies on an edge of the pyramid S�

Analogous properties hold for the other quadratic segments of the interpolant
p�x� � Thus p�x� is convex if and only if the intersection of S with the data
plane is the tangent simplex t� � � � tn�

This �nishes the proof since S and the data plane contain � and since the
tangent simplex always lies in one of the �n disjoint pyramids formed by the
planes Pi� �

The convexity criterion can also be expressed by n inequalities which we have
seen already in the bivariate case�

Corollary ���� Let dij denote the Euclidean distance between the plane Pi

and the point pj and let D be the n � n�matrix �dij�ni�j��� Further let Ai and
Bi denote the matrices obtained from the n� n�matrix �dij�ni�j�� by replacing
the i�th row by the row �� � � � �� or by deleting the i�th row and i�th column�
respectively�

If f and � are well�associated� then the tangent simplex contains the data

��



simplex if and only if for all i � �� � � � � n

gi �� detAi � detBi � ��

Proof�

The functions gi depend linearly on pi since the Euclidean distance between
a point and a plane can be expressed by a scalar product� and it holds

gi �

��
��
� for pi � pj� j �� i

�detBi�� for pi � ti�

Since D is the product of two matrices with full rank n�

D �

�
�� w� � � � wn

w�� � � � wn�

�
��
t �
��p� � � � pn

� � � � �

�
�� �

the submatrices Bi are regular� So gi is negative if and only if pi and ti lie on
opposite sides of the face �f����ngnfig� As we have seen in the proof of Theorem
�� this is all we need to show� �
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