

Curves and Surfaces in CAD Exercises

WS 2017

Homework Sheet 2

Exercise 2.1 (5 Points)

The **Bernstein operator** \mathcal{B} assigns to a function f on [0, 1] the polynomial

$$\mathcal{B}[f](t) := \sum_{i=0}^{n} f(i/n) B_i^n(t).$$

Prove that if f is a polynomial of degree $m \leq n$, then $\mathcal{B}[f]$ is a polynomial of degree m.

Exercise 2.2 (4 Points)

Prove that the ith forward difference satisfies

$$\Delta^{i}\mathbf{b}_{0} = \sum_{k=0}^{i} \binom{i}{k} (-1)^{i-k}\mathbf{b}_{k}.$$

Exercise 2.3 (6 Points)

Let $\mathbf{b}_0 = \begin{bmatrix} 2 & 0 \end{bmatrix}^t$, $\mathbf{b}_1 = \begin{bmatrix} 1 & 2 \end{bmatrix}^t$, $\mathbf{b}_2 = \begin{bmatrix} 4 & 3 \end{bmatrix}^t$ be the Bézier points of a curve $\mathbf{b}(u)$ with respect to the interval $\begin{bmatrix} 0, 1 \end{bmatrix}$.

- 1. Determine the Bézier representation of $\mathbf{b}(u)$ with respect to the interval [1,3].
- 2. Determine the monomial representation of $\mathbf{b}(u)$.
- 3. Determine the Bézier representation of $\mathbf{b}(u)$ of degree 3 with respect to the interval [0, 1].

Exercise 2.4 (5 Points)

Let $\mathbf{b}(t) = \sum_{i=0}^{3} \mathbf{b}_i B_i^3(t)$ be a planar cubic Bézier curve with respect to [0, 1], where

$$\mathbf{b}_0 = \begin{bmatrix} 1\\1 \end{bmatrix}, \ \mathbf{b}_1 = \begin{bmatrix} 1\\0 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 0\\0 \end{bmatrix}.$$

For which \mathbf{b}_3 does \mathbf{b} have a cusp, that is, $\dot{\mathbf{b}}(\hat{t}) = \mathbf{0}$ for some $\hat{t} \in [0, 1]$?

Due Date: Friday, November 3, 2017, before the tutorial.