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Abstract

The Catmull-Clark subdivision algorithm consists of an operator
that can be decomposed into a refinement operator and a succes-
sively executed smoothing operator, where the refinement operator
splits each face with m vertices into m quadrilateral subfaces and the
smoothing operator replaces each internal vertex with an affine com-
bination of its neighboring vertices and itself. Over regular meshes,
this smoothing operator is identical to applying the (face-)midpoint
operator twice, where each application of the midpoint operator maps
a mesh to the dual mesh that connects the centers of adjacent faces.

In this paper, we generalize the Catmull-Clark scheme by gener-
alizing the smoothing operator on regular meshes and by combining
several smoothing operations into one subdivision step. The gener-
alized Catmull-Clark subdivision operators build an infinite class of
quadrilateral subdivision schemes, which includes the Catmull-Clark
scheme with restricted parameters and the midpoint schemes.

We analyze the smoothness of the resulting subdivision surfaces
at regular and at extraordinary points by estimating the norm of a
second order difference scheme and by using established methods for
analyzing midpoint subdivision. The surfaces are smooth for regular
meshes and they are also smooth at extraordinary points for most
generalized Catmull-Clark subdivision schemes.

Categories and Subject Descriptors (according to ACM CCS):
I.3.5 [Computer Graphics]: Computational Geometry and Object Mod-
eling — Curve, surface, solid, and object representations

Keywords: subdivision surfaces; Catmull-Clark subdivision algo-
rithm; midpoint subdivision; difference schemes; extraordinary points;
characteristic map
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1 Introduction

When applying the Lane-Riesenfeld subdivision algorithm [LR80] to regu-
lar 2-dimensional quadrilateral manifold meshes, the limiting surfaces are
uniform B-spline surfaces. Midpoint subdivision generalizes Lane-Riesenfeld
subdivision in so far as it can be applied to arbitrary 2-dimensional quadrilat-
eral manifold meshes. A midpoint subdivision scheme consists of an operator
Mn = An−1R of degree n ∈ N, which is used successively to subdivide an in-
put meshM. The refinement operator R mapsM to the quadrilateral mesh
RM, where the edges of RM connect the center with all edge midpoints for
each face of M and any vertex of M with all adjacent edge midpoints as
shown at the top of Figure 1.1. The averaging operator A maps M to the
dual mesh AM that connects the centers of adjacent faces as shown at the
bottom of Figure 1.1.
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Figure 1.1: Two basic operators for subdividing quadrilateral meshes, where
m is the valence of a vertex or face: refinement operator R (top) and aver-
aging operator A (bottom).

For arbitrary meshes, the midpoint scheme of degree 2 or 3 is Doo-Sabin
or Catmull-Clark subdivision [DS78, CC78] with specific parameters, respec-
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tively. The limiting surfaces generated by these schemes are smooth every-
where as shown e. g. in [PR98], where Reif’s C1-criterion [Rei95] was used
and the spectral properties of the subdivision matrix were numerically an-
alyzed. Numerically computing or estimating the spectral properties of the
subdivision matrix is a bottleneck when Reif’s C1-criterion is used to analyze
infinite classes of subdivision schemes. Therefore, the C1 result of midpoint
subdivision was merely extended by [ZS01] up to degree 9 and only recently,
further geometric arguments were developed that helped to prove that mid-
point subdivision for any degree n ≥ 2 generates C1 subdivision surfaces
everywhere [PC11].

The Catmull-Clark scheme consists of an operator whose masks are shown
in Figure 1.2 and this operator can be decomposed into a refinement opera-
tor R (see Figure 1.1, top) and a successively executed smoothing operator
Bα,β with constraints α(4) = 1/4 and β(4) = 1/2 and with the following
relationships

α̃ = α +
β

2
+
γ

4
, β̃ =

β

2
+
γ

2
, and γ̃ =

γ

4
.

The smoothing operator Bα,β maps a mesh M to the quadrilateral mesh
Bα,βM, where each internal vertex inM is replaced with an affine combina-
tion of its neighboring vertices and itself, see Figure 1.3. Over regular meshes,
since α(4) = 1/4 and β(4) = 1/2, Bα,β is identical to two applications of the
(face-)midpoint operator A.
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Figure 1.2: Masks for the Catmull-Clark scheme, where the left three masks
are for new regular vertices and the right is for new extraordinary vertices
with valence m(6= 4). In [CC78], Catmull and Clark suggest α̃ = 1 − 7

4m
,

β̃ = 3
2m

, and γ̃ = 1
4m

.
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β := β(m)
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α,β ∈ [0, 1)
γ ∈ (0, 1)

Figure 1.3: Smoothing operator Bα,β for a vertex of valence m.

In this paper, we generalize the Catmull-Clark scheme in two ways. First,
we generalize the smoothing operator on regular meshes. Second, we exe-
cute several smoothing operations, which may have different parameters, in
one subdivision step. The generalized Catmull-Clark subdivision operators
build an infinite class of quadrilateral subdivision schemes, which includes the
Catmull-Clark scheme with restricted parameters and the midpoint schemes.

We further develop the techniques used in [PC11] to analyze the smooth-
ness of the resulting subdivision surfaces. The surfaces are smooth for regular
meshes and they are also smooth at their extraordinary points for most gen-
eralized Catmull-Clark subdivision schemes.

2 Generalized Catmull-Clark subdivision
In this section, we define a generalized Catmull-Clark scheme Mn of degree
n ≥ 2 by

Mn =

{
Br · · ·B1R , if n = 2r + 1

ABr · · ·B1R , if n = 2r + 2
,

where R and A are the refinement operator and the averaging operator re-
spectively, as shown in Figure 1.1, and Bi = Bαi,βi are smoothing operators,
as shown in Figure 1.3. The functions αi(·) and βi(·) are non-negative func-
tions depending on i and they satisfy 0 < αi + βi < 1 for all i.

If α1(4) = 1/4 and β1(4) = 1/2, then B1 = A2 on regular meshes and
M3 = B1R is the Catmull-Clark scheme with restricted parameters α1 and
β1, i. e., at extraordinary points with valencies m(6= 4), α1 and β1 satisfy
α1(m), β1(m) ∈ [0, 1) and α1(m) + β1(m) ∈ (0, 1).

If α1 ≡ 1/4 and β1 ≡ 1/2, then B1 = A2 on arbitrary meshes and
Mn = ABr

1R or Mn = Br
1R are midpoint schemes Mn of degree n if n is even

or odd, respectively.
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In the following sections, we analyze the smoothness property of gener-
alized Catmull-Clark subdivision surfaces at their regular points and also at
their extraordinary points.

3 Smoothness for regular meshes

To analyze the smoothness of generalized Catmull-Clark schemes for regular
meshes, we introduce a second order difference scheme and analyze its norm
in this section.

A regular quadrilateral mesh C can be represented by the biinfinite matrix
C = [ci]i∈Z2 of its vertices ci, which are connected by the edges cjcj+ek ,
j ∈ Z2, k = 1, 2, as shown in Figure 3.1, where

[e1 e2] =

[
1 0
0 1

]
.

cj

cj+e1

cj+e2

cj−e1

cj−e2

∇1cj

∇2cj

Figure 3.1: A subnet of a regular quadrilateral mesh.

To analyze smoothness, we need the (backward) differences

∇kci = ci − ci−ek , k = 1, 2,

∇ci = [∇1ci ∇2ci] ,

∇∇ci = ∇(∇ci) = [∇1∇1ci ∇1∇2ci ∇2∇1ci ∇2∇2ci] ,

and the mesh C∇∇ = [∇∇ci]i∈Z2 of the second order differences ∇∇ci.
Let U be A, R, or Bi. Since U maps a linear mesh [l(i)]i∈Z2 to itself,

where l : R2 → R is any linear function, a second order difference scheme
U∇∇ exists such that

(UC)∇∇ = U∇∇C∇∇ (3.1)

for all meshes C, see [Kob00, Equations (11) and (12)].
Over regular quadrilateral meshes, we restrict α(m) and β(m) to the

valence m = 4 and consider α and β to be constants in this section.
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Applying a generalized Catmull-Clark subdivision operator

U = Br · · ·B1R or U = ABr · · ·B1R

to the grid Z2, we obtain the scaled grid Z2 / 2. We recall the following well-
known fact, which can be derived easily from [Dyn92, Theorem 7.6 on Page
93].

Theorem 3.1. (C1 condition for regular meshes)
Let

‖C‖∞ := sup
i∈Z2

‖ci‖ and ‖U‖ := sup
‖C‖∞=1

‖UC‖∞ .

If U maps Z2 to Z2 / 2 and if 2U∇∇ has some contractive power, i. e., if

‖Uk
∇∇‖ < 1/2k

for some k, then U is a C1-scheme, i. e., for any bounded mesh C there is a
continuously differentiable function f(x, y) such that

lim
k→∞
‖UkC − f(Z2 / 2k)‖ = 0 .

To check the prerequisites of this theorem, we use

Lemma 3.2. (Estimates for three second difference schemes)

(a) ‖(Bα,β)∇∇‖ = 1 for α, β, 1− α− β ∈ [0, 1],

(b) ‖A∇∇‖ = 1, and

(c) ‖(Bα,βR)∇∇‖ ≤ max
{

2α+β
4
, 1

2
− 2α+β

4

}
< 1

2
for α, β ∈ [0, 1) and

1− α− β ∈ (0, 1).

Proof. Since (Bα,β)∇∇ = Bα,β and ‖Bα,β‖ = 1 for α, β, 1−α−β ∈ [0, 1], we
get (a).

Since A∇∇ = A and ‖A‖ = 1, (b) follows.
Figure 3.2 shows the meshes C and Bα,βR C schematically. We calculate

the second differences in these meshes and get

∇2
1b52 =

β

16
(∇2

1c30 +∇2
1c32) +

4α+ β

8
∇2

1c31,

∇2
1b42 =

γ

16
(∇2

1c20 +∇2
1c30 +∇2

1c22 +∇2
1c32) +

β + γ

8
(∇2

1c21 +∇2
1c31),

∇2
1b51 =

2α+ β

8
(∇2

1c30 +∇2
1c31) ,

∇2
1b41 =

β + 2γ
16

(∇2
1c20 +∇2

1c30 +∇2
1c21 +∇2

1c31) , and

∇2∇1b52 =
4α+ 2β + γ

16
∇2∇1c31 +

β + γ

16
(∇2∇1c21 +∇2∇1c32)

+
γ

16
∇2∇1c22 .
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c00,b00 c10,b20 c20,b40 c30,b60

c21

c02,b04 c12,b24 c22,b44 c32,b64

c31c11c01

C = [cij ]

Bα,βR C = [bij ]
b42 b52

b41 b51

Figure 3.2: A pair of meshes C and Bα,βR C.

Similarly, we can derive such equalities for all other elements in (Bα,βR)∇∇ C∇∇,
where γ = 1− α− β ∈ (0, 1). Thus, since α, β ∈ [0, 1), we get

‖(Bα,βR)∇∇‖
≤ max

{
2 · β

16
+

4α + β

8
, 4 · γ

16
+ 2 · β + γ

8
, 2 · 2α + β

8
,

4 · β + 2γ

16
,

4α + 2β + γ

16
+ 2 · β + γ

16
+

γ

16

}
= max

{
2α + β

4
,
β + 2γ

4
,
α + β + γ

4

}
= max

{
2α + β

4
,

1

2
− 2α + β

4

}
= max

{
α

4
+

1− γ
4

,
1

2
−
(
α

4
+

1− γ
4

)}
<

1

2
.

This proves (c).

Theorem 3.3. (C1 continuity for regular meshes)
Any generalized Catmull-Clark scheme is a C1-scheme for regular meshes.

Proof. Let U = Br · · ·B1R or U = ABr · · ·B1R be a generalized Catmull-
Clark operator. Using Equation (3.1) and Lemma 3.2, we obtain

‖U∇∇‖
≤

{ ‖(Br)∇∇‖ · · · ‖(B2)∇∇‖‖(B1R)∇∇‖ , if U = Br · · ·B1R
‖A∇∇‖‖(Br)∇∇‖ · · · ‖(B2)∇∇‖‖(B1R)∇∇‖ , if U = ABr · · ·B1R

≤ ‖(B1R)∇∇‖ ≤ max

{
2α1 + β1

4
,

1

2
− 2α1 + β1

4

}
<

1

2
.
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Since U maps Z2 to Z2/2, we conclude from Theorem 3.1 that U is a C1-
scheme.

4 Basic observations

In this section, we consider generalized Catmull-Clark subdivision for arbi-
trary quadrilateral meshes with extraordinary vertices. Interior vertices or
faces of a quadrilateral mesh are called extraordinary if their valence does
not equal 4.

Subdividing by R, Bα,β, and A does not increase the number of extraor-
dinary elements and isolates these elements. Therefore, it suffices to consider
only (sub)meshes with one extraordinary vertex, as illustrated in Figure 4.1.
These meshes are called ringnets.

N1 N1

Figure 4.1: Examples of rings and ringnets: a 1-ringnet with an extraordinary
face of valence 5 (left) and a 2-ringnet with an extraordinary vertex of valence
5 (right). The first rings N1 in both meshes are marked by bold lines and
the convex corners of N1 are marked by • .

Given a ringnet N and a generalized Catmull-Clark operator U = Mn of
degree n, we generate the sequence N (l) = U lN .

Definition 4.1. (Ring and ringnet)
Let N0 be the subnet of N consisting of the extraordinary vertex or face of
N . The k-th ring around N0 is denoted by Nk and the mesh consisting of
N0, . . . ,Nk by N0...k. The latter is called a k-ringnet or k-net for short.
Furthermore, the submesh Ni...j consists of Ni, . . . , Nj .
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We say that a mesh N influences another subdivided meshM if, during
the subdivision, every vertex in N has an effect on some vertex inM and if
additionally all vertices in M depend on N .

In the definition of the smoothing operators Bi = Bαi,βi , the parameter
functions αi(·) and βi(·) may have zero value, which means that, applying
Bi on a ringnet N , a generated vertex v1 or face f1 may be not influenced
by some vertices in N that lie topologically in the direct neighborhood of v1

or f1. But, in fact, if we consider a whole step of Mn, then, for a vertex v2

or face f2 of MnN with odd n or even n respectively, all vertices of N lying
topologically in the direct neighborhood of v2 or f2 have an effect on v2 or
f2 and there is a same influence relationship for Mn and Mn, where Mn is
the midpoint scheme of degree n, due to the following lemma.

Lemma 4.2. (Same influence relationship for Mn and Mn)
Let N be a ringnet. For each pair of vertices in MnN and MnN respectively,
if n is odd, or for each pair of faces in MnN and MnN respectively, if n
is even, where they have the same topological location, these two vertices or
faces are influenced by the same vertices in N .

Proof. Since M2 = M2 and M2r+2 = AM2r+1, it suffices to consider Mn and
Mn with odd degrees n = 2r + 1 over a primal or dual ringnet.

For r = 1, we see that every vertex p or face f of a primal or dual mesh N
influences two subsets of vertices in M3N and M3N , when applying M3N
and M3N to N , respectively, as shown schematically in Figure 4.2. And
these two subsets of vertices have the same topological locations.

N

M3N
M3N

p
f

Figure 4.2: The vertices of M3N and M3N which are influenced by an
extraordinary vertex p (left) or an extraordinary face f (right) of valence 5.

Hence, this implies that the lemma is true for M3 and for M4 = AM3.
By induction, it can be similarly shown that the lemma also holds for M2r+1

and M2r+2, r ≥ 2.
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Remark 4.3. (Core mesh)

The r-net N0...r of N consists of all vertices influencing N (l)
0 for some l ≥ 1,

where r =
⌊
n−1

2

⌋
. It is called the core (mesh) of N with respect to U .

Depending on the context, we treat any mesh as a matrix whose rows
represent the vertices or as the set of all vertices.

It is straightforward to prove

Lemma 4.4. (Dependence after a subdivision step)

N0...r+k determines N (1)
0...r+2k for k ≥ 0, i. e.,

N (1)
0...r+2k = (U N0...r+k)0...r+2k .

If we subdivide just the regular parts of any N (k), we obtain for every k
a limiting surface sk. Since sk+1 contains sk, we can consider the difference
surface rk = sk+1\sk whose control points are contained in a sufficiently

large subnet N (k)
0...ρ with ρ ≥ n not depending on k. Due to Lemma 4.4, the

operator U restricted to ρ-nets can be represented by a stochastic matrix
S = Sρ called the subdivision matrix, i. e.,

N (k+1)
0...ρ = SN (k)

0...ρ . (4.1)

Lemma 4.5. (Dependence property of a core mesh)
For some constant q depending on U and ρ, every vertex in N0...r influences
all vertices in N (q+k)

0...ρ = (U q+k N )0...ρ for all k ≥ 0, which is denoted by

N0...r V N (q+k)
0...ρ .

Proof. For sufficiently large l and any k ≥ 0, every vertex in N0...r influences
all vertices in N (l+k)

0 , all vertices in N (l+k+1)
0...1 , . . . , and all vertices in N (l+k+ρ)

0...ρ .
Hence, we obtain the lemma with q = l + ρ.

Theorem 4.6. (C0-property of U)
The subdivision surfaces generated by U are C0 continuous.

Proof. Since the subdivision matrix S is stochastic, i. e., S is a non-negative
and real matrix and each row of S sums to 1, 1 is the dominant eigenvalue
of S. Due to Lemma 4.5, there is an integer l ≥ 1 such that

N0...r V N (l)
0...ρ = SlN0...ρ .

This implies that Sl has a positive column and, according to [MP89, Theorem
2.1], any sequence (Si c) converges to a multiple of the vector [1 . . . 1]t as
i → ∞ for all real vectors c. Therefore, the only dominant eigenvalue of S
is 1 and it has algebraic multiplicity 1.

Hence, the difference surfaces si\si−1 converge to a point and the surfaces
generated by U are continuous.
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To analyze the spectrum of the subdivision matrix S, we order any ρ-net
N such that

N =



N0...r

Nb
Na
Nr+2
...
Nρ


,

whereNa consists of the convex corners andNb of all other points inNr+1 (see
Figure 4.1 for an illustration of the convex corners). With this arrangement,
the subdivision matrix S has the lower triangular form

S =



C
∗ B
∗ ∗ A
∗ ∗ ∗ 0
...

. . . . . .

∗ . . . . . . . . . ∗ 0


,

where

N (1)
0...r = C N0...r , (4.2)

N (1)
b =

[ ∗ B
] [ N0...r

Nb
]
, and (4.3)

N (1)
a =

[ ∗ ∗ A
]  N0...r

Nb
Na

 . (4.4)

To verify this, we recall that any point influencing the core mesh influences
N0 and thus belongs to the core mesh. This implies Equation (4.2) and
shows that Nr+1 influences only points in (UN )r+1...∞ and hence, that Nr+2

influences only points in (UN )r+2...∞, etc. Since Na does not influence any

point in N (1)
b , Equations (4.3) and (4.4) follow. Moreover, due to Lemma 4.4,

(UN )r+2 is determined by N0...r+1 and (UN )r+3 is determined by N0...r+2,
etc.

Hence, the eigenvalues of S are zero or are the eigenvalues of the blocks
C, B, and A.
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Lemma 4.7. (Spectral radii of B and A)
The spectral radii ρB and ρA of B and A satisfy

ρB ≤
(

1

2

)bn2 c+1

and ρA ≤
(

1

4

)bn2 c+1

.

In particular, it holds ρB, ρA ≤ 1/4 for n ≥ 2.

Proof. Since A is non-negative, we get [HJ85, Corollary 6.1.5 on Page 346]

ρA ≤ ‖A‖∞ = ‖A1‖∞, where 1 := [1 . . . 1]t .

The vector A1 represents the convex corners of N (1)
r+1 if N0...r = 0, Nb = 0,

Na = 1, and Nr+2...ρ = 0. One can easily verify that the (scalar-valued)
vertices of these convex corners are

1

4
· 1− α1(4)− β1(4)

4
· · · · · 1− αr(4)− βr(4)

4
for n = 2r + 1 and

1

4
· 1− α1(4)− β1(4)

4
· · · · · 1− αr(4)− βr(4)

4
· 1

4
for n = 2r + 2.

Since 1− αi(4)− βi(4) ∈ (0, 1), this concludes the proof of the second state-
ment. The first statement can be proved similarly.

5 The characteristic map

For the C1 analysis of generalized Catmull-Clark subdivision, we need to
investigate the eigenvectors and eigenvalues of the subdivision matrix S. We
do this by subdividing special grid meshes as in [PC11] and recall the basic
definitions in this section.

Definition 5.1. (Grid mesh)
A primal grid mesh of valence m and frequency f is a planar primal ringnet
with the vertices

glij =

[
Re(glij)
Im(glij)

]
∈ R2 ,

where glij = ieı̂2πlf/m + jeı̂2π(l+1)f/m ∈ C and i, j ≥ 0, l ∈ Zm, ı̂ =
√−1.

A dual grid mesh of valence m and frequency f consists of the vertices

hlij =
1

4
(gli−1,j−1 + gli,j−1 + gli−1,j + gli,j), i, j ≥ 1, l ∈ Zm

(see Figure 5.1). For fixed l, the vertices glij or hlij with (i, j) 6= (0, 0) of
a grid mesh N build the l-th segment of N . The segment angle of N is
ϕ = 2πf/m. The half-line from the center gl00 through gl10 is called the l-th
spoke, denoted by Sl(N ) or Sl for short.
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0 S0

S1

Sm−1

g0
02

g0
21

g0
10g0

00

g1
21

S0

S1

Sm−1

h0
11 h0

21

h0
22

h1
21

g0
11

0

Figure 5.1: A primal grid mesh (left) and a dual grid mesh (right) with
valence 5 and frequency 1.

Topologically, any ringnetM is equivalent to a grid mesh N . Therefore,
we use the same indices for equivalent vertices and denote the vertices ofM
by plij.

Definition 5.2. (Symmetric ringnet)
A planar ringnet of valence m with the vertices plij in R2 is called rotation
symmetric with frequency f , if

pl+1
ij =

[
cos θ − sin θ
sin θ cos θ

]
plij with θ = 2πf/m .

A planar ringnet N ∈ R2 is called reflection symmetric if its permutation

Ñ consisting of the points p̃lij := p
(m−1)−l
ji equals the conjugate ringnet N

consisting of the points

plij =

[
plij,x
plij,y

]
=

[
plij,x
−plij,y

]
,

i. e.,

Ñ = N .

A rotation and reflection symmetric ringnet is called symmetric.
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Using the technique established in [PC11], we construct and analyze a
characteristic map of a generalized Catmull-Clark scheme

U = Br · · ·B1R or U = ABr · · ·B1R

with Bi = Bαi,βi . We follow [PC11] and use results stated there for midpoint
subdivision that are also valid for generalized Catmull-Clark subdivision since
their proofs are only based on the properties

(a) that the subdivision scheme preserves symmetry and generates mid-
points or any convex combinations,

(b) due to Lemma 4.2, that midpoint schemes and generalized Catmull-
Clark schemes have the same influence relationship when applying a
whole subdivision operator, and

(c) that Bi maps a ringnet which is primal and rotation symmetric with
frequency f 6= 0 to a ringnet of the same type and thus, Bi preserves
the location of the extraordinary vertex.

Theorem 5.3. (M∞ and λϕ)
Let M be the core mesh of a grid mesh with frequency f and segment angle
ϕ := 2fπ/m ∈ (0, π) . Let

Mk :=
(UkM)0...r

‖(UkM)0...r‖ ,

where ‖ · ‖ denotes any matrix norm. Then the following statements hold.

(a) The sequence (Mk)k∈N converges to a symmetric eigennet M∞ with
segment angle ϕ and a positive eigenvalue λϕ, which depends only on
ϕ but not on f and m. (M∞)0...1 has at most one zero control point.
Additionally, we define λπ = |γπ|, where γπ is the maximum eigenvalue
associated with a rotation symmetric eigenvector with segment angle π.

(b) Restricting U to the core meshes, the eigenvalue λϕ is the dominant
eigenvalue of the eigenspaces of frequencies f and m − f and it has
geometric and algebraic multiplicity 2.

(c) λα > λθ > λπ for 0 < α < θ < π.

This can be proved as (5.4), (5.7), (6.3), and (6.4) in [PC11]. For mid-
point subdivision schemes for quadrilateral meshes, λπ is equal to 1/4 and
to the subdominant eigenvalue µ0 of frequency 0. This implies that λ2π/m is
subdominant. However, for a generalized Catmull-Clark subdivision scheme,
λπ can be smaller than µ0. Therefore, we use the following lemma to show
that λ2π/m is subdominant for m > 4.
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Lemma 5.4. (λπ/2 = 1/2)

(a) For m = 4, the operator U has the subdominant eigenvalue 1/2.

(b) λπ/2 = 1/2 holds for any m and f such that 2fπ
m

= π
2
.

Proof. We consider a regular scalar-valued eigenmesh λM = UM with eigen-
value λ. Since

λM∇∇ = U∇∇M∇∇

and ‖U∇∇‖ < 1/2 due to Lemma 3.2, it follows that |λ| < 1/2 or that
M∇∇ = 0, meaning that M is a linear image of a regular grid G, i. e., a
linear combination of the constant mesh [1 . . . 1]t with eigenvalue 1 and the
two coordinates of G. Since UG = 1

2
G, (a) follows for m = 4. Since there is

a basis of rotation symmetric eigenmeshes, it suffices for m 6= 4 to consider
a rotation symmetric mesh M with segment angle π/2. Due to symmetry,
the subdivided mesh UM does not depend on f , whence (b) follows.

We observe two ringnets of frequency 0 with different valencies m1 and
m2. If their first segments and their extraordinary vertices or the vertices
on the extraordinary faces are identical, respectively, then the generated first
segments and the generated extraordinary vertices or the vertices on the
generated extraordinary faces are also identical after applying R or Bα,β or
A if α(m1) = α(m2) and β(m1) = β(m2). Hence, we get

Lemma 5.5. (λ2π/m and µ0)
For constant functions α1, β1, . . . , αr, βr, the subdominant eigenvalue µ0 of
frequency 0 does not depend on valence m and hence

|µ0| ≤ 1/2 = λπ/2 < λ2π/m

for m ≥ 5 due to Lemma 5.4 and Theorem 5.3 (c).

Lemmas 5.4 and 5.5 together with Theorem 5.3 and Lemma 4.7 can be
used as in the proof of Theorem (7.3) in [PC11] to derive the following corol-
lary.

Corollary 5.6. (Subdominant eigenvalue for m ≥ 5)
Let ρ be as in Equation (4.1) and let U be a generalized Catmull-Clark sub-
division operator of degree n mapping the space of ρ-ringnets of valence m to
itself with constant functions αi, βi ∈ [0, 1), n ≥ 2, and 1 − αi − βi ∈ (0, 1).
Let M be a ρ-grid mesh of valence m and frequency 1. If m ≥ 5, the meshes

Mk :=
UkM
‖UkM‖

15



converge to a subdominant eigenmeshM∞ of U called the characteristic mesh
of U and its eigenvalue λ2π/m has geometric and algebraic multiplicity 2.

Remark 5.7. (Subdominant eigenvalue for m = 3 and for U with
non-constant functions αi and βi)
Corollary 5.6 is true for m = 3 if

λ2π/m > max{|µ0(m)|, ρB, ρA} (5.1)

and Corollary 5.6 is also true for U with non-constant functions αi, βi and
m ≥ 5 if

λ2π/m > |µ0(m)| , (5.2)

where ρB and ρA are the spectral radii defined in Lemma 4.7.

6 Smoothness for irregular meshes

Let C be the characteristic mesh of valence m of the generalized Catmull-
Clark scheme

U = Br · · ·B1R or U = ABr · · ·B1R

with Bi = Bαi,βi , αi, βi ∈ [0, 1), and 1 − αi − βi ∈ (0, 1). It defines the
control mesh of a characteristic map, which is a surface ring consisting of m
segments.

Theorem 6.1. (C1-property of Un)
The generalized Catmull-Clark scheme U = Mn of degree n ≥ 2 with con-
stant functions αi, βi is a C1 subdivision algorithm for valencies m ≥ 5. U
is also a C1 algorithm with non-constant functions αi, βi or for m = 3 if
Inequality (5.2) or Inequality (5.1) is satisfied, respectively.

Proof. To simplify the notation, we identify the real plane R2 with the com-
plex plane C by the bijection R2 3 [x y]t 7→ x+ ı̂y ∈ C. Let c(x, y) : Ω→ C
be 3 segments of the characteristic map of U , where Ω = Ω−1 ∪ Ω0 ∪ Ω1 as
shown at the left of Figure 6.1, and c|Ωi is the i-th segment for i = −1, 0, 1.

First, we observe a grid meshM as shown at the right of Figure 6.1 such
that the subdivided and normalized meshes Mk = (UkM)0...ρ/‖(UkM)0...ρ‖
converge to the characteristic mesh C due to Corollary 5.6 and Remark 5.7.
If n is odd, we require M to be primal and otherwise to be dual. Let
Ek = ∇2(Mk) and E = ∇2(C), where the edge set of a ringnet K = [pkij] is
defined by

∇2(K) := {∇2p
0
i,j = p0

i,j − p0
i,j−1 | i ≥ 0, j > 0} ,
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0 x

y

Ω0Ω1

Ω−1

S0

S1S2

x0

ı̂u0

S−1Ω = Ω−1 ∪ Ω0 ∪ Ω1

Figure 6.1: The domain Ω of c (left) and the −1, 0, 1-th segments of a grid
mesh (right), where the y-edges in the three segments are marked by arrows
and the y-edges in the 0-th segment are especially marked by double arrows.

as illustrated at the right of Figure 6.1. These and other edges control the
directions of the partial derivatives cy(Ω0). Furthermore, we add both u1

and ı̂u0 to Ek and E , where u1 is the edge direction of the spoke S1 and ı̂u0 is
the edge direction of the spoke S0 rotated by +π/2. Refining, averaging, and
smoothing a mesh also means its edges are averaged by the masks shown
in Figure 6.2. In particular, the edges in Ek are either, due to symmetry,
parallel to u1 and ı̂u0 or obtained by iteratively averaging the edges in Ek−1

and multiplying these by positive numbers because of the normalization.
Thus, we know that Ek lies in the cone spanned by Ek−1, i. e., in the cone

D0 :=

{
[0,∞) eı̂[π/2, 2π/3] , if m = 3
[0,∞) eı̂[2π/m, π/2] , if m ≥ 5

.

Therefore, by induction, all Ek and E lie in D0.

Moreover, since C0...1 is symmetric and has at most one zero control point,
at least one of its edges is non-zero. Subdividing C, we can see that every
element of E is a linear combination of E with non-negative weights and a
positive weight for the non-zero element in the 1-ringnet. Hence, E has no
zero elements.

Second, we observe that for a symmetric ringnet N , each element of
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1/4
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1/2

1/4

1/4

1/4

1/4 b =
β(4)

4
, c =

1− α(4)− β(4)
4

α(4) b

c

b

b

b c

c

c

Figure 6.2: Masks for R∇ (top left), A∇ (bottom left), and (Bα,β)∇ (right)
on regular meshes.

∇2(2RN ), ∇2(AN ), and ∇2(Bα,βN ) is a convex combination of elements in
∇2(N ), in ∇2(N ) reflected at S1, and in −∇2(N ) reflected at S0, where a
reflected element has a smaller weight than its unreflected counterpart. Thus,
by induction, we see that ∇2(2k UkC) ⊂ D0, for k ≥ 0. Since every partial
derivative cy over Ω0 is the limit of a sequence of vectors vk ∈ ∇2(2k UkC),
it follows that cy(Ω0) ⊂ D0.

Next, we show 0 /∈ cy(Ω0). Any cy(x), x ∈ Ω0, is a convex combination
of F−1 or F0, where Fi is the set of all y-edges in the segments i and i+ 1 of
2k UkC for sufficiently large k. We observe

F−1 = eπ/2−2π/mF0 ⊆
{

(0, ∞) eı̂[π/3, 2π/3] , if m = 3
(0, ∞) eı̂[2π/m, π−2π/m] , if m ≥ 5

,

which implies 0 /∈ cy(Ω0). Hence, cy(Ω0) ⊂ D := D\{0} and similarly
cx(Ω0) ⊂ D − π/2.

0 u0

u1

u−1

m = 3
D

D − π/2

0
u0

u1D

D − π/2

m ≥ 5ı̂u0

−ı̂u1

−ı̂u1

ı̂u0

Figure 6.3: The direction cones D and D − π/2.
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Since each element of D is linearly independent with each element of
D − π/2 (see Figure 6.3), c is regular over Ω0 and hence, the total char-
acteristic map of U is regular. Because cy(Ω0) ⊂ D, c does not map any
line segment between two points in Ω0 to a closed curve, meaning that c is
injective over Ω0. Moreover, sinceM is a symmetric grid mesh whose zeroth
segment lies in [0, ∞) eı̂[0, 2π/m] =: A and U preserves symmetry, it implies
c(Ω0) ⊂ A and c maps the interior of Ω0 into the interior of A. Hence, the
total characteristic map of U is injective. Finally, Reif’s C1-criterion [Rei95,
Theorem 3.6] is satisfied, which concludes the proof.

Example 6.2. (M3)
For U = Bα,βR with α, β ∈ [0, 1), 1 − α − β ∈ (0, 1) and for valence m,
applying the discrete Fourier transform on the subdivision matrix of M3, we
get

µ0(m) =
3α(m) + β(m) +

√
(3α(m) + β(m))2 − 4t α(m)

8

and

λ 2π
m

(m) =
4 + t+ (2− t)c+

√
(2− t)2c2 + 2(4 + t)(2− t)c+ (4− t)2

16
,

where t = 2α(4) + β(4) and c = cos(2π/m). According to Theorem 6.1, if
α(m) = α(4), β(m) = β(4), and m ≥ 5, then M3 generates C1 surfaces
around extraordinary points of valence m. Otherwise, M3 generates C1 sur-
faces around extraordinary points of valence m if λ 2π

m
(m) > µ0(m) holds,

since it can be easily verified that

λ 2π
m

(m) ≥ 5

16
>

1

4
≥ max{ρA, ρB} .

7 Conclusion

In this paper, a new class of generalized Catmull-Clark subdivision schemes
is introduced and the smoothness of the resulting subdivision surfaces is an-
alyzed. The established C1 analysis tools for quadrilateral meshes in [PC11]
have been generalized to the convex combination operator Bα,β. Further-
more, a deeper understanding of the spectral properties of the subdivision
matrices at extraordinary points is provided.

Tools to analyze wider and infinite classes of subdivision schemes are
developed in this paper and hopefully help to advance the state of the art
towards general C1 analysis tools for other subdivision schemes that can be
factorized into general and simple convex combination operators.
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mal/dual quadrilateral subdivision schemes. Computer Aided Geo-
metric Design, 18(5):429–454, June 2001.

20


	2012,16_Titelbl.pdf
	Chen_2012-16_neu-1.pdf

