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ABSTRACT
Extracting range data through active optical triangulation
requires robust stripe edge detection of the emitted pattern
because of undesired shape and shading variations in the
scanned object. We propose several extensions to a struc-
tured light system originally proposed by Zhang et al. [1].
Assuming stripes of a certain width, our edge detection cri-
terion is achieved simply by restricting the number of con-
secutive edge pixels. Subpixel accuracy from one single
input image can be obtained by approximating the gradient
of the square local contrast with a piecewise linear func-
tion. Finally, we present a noise reduction technique for the
range map through meshing followed by a parameterized
face orientation culling. Experimental results have demon-
strated major improvements in terms of robustness against
acquisition noise, shading variations and complex shapes.
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1 Introduction

Being able to reconstruct the shape of an object from a set
of images has a tremendous impact on the field of com-
puter graphics. Although a large assortment of commer-
cially available 3D scanning devices can be employed for
our system, we limit ourselves to devices which are rela-
tively economical. We used an ASK M2 DLP video pro-
jector for the emitter and a Fuji Finepix S2 Pro profes-
sional digital camera for the sensor as shown in Figure 1.
The projector produces a specific structured light pattern,
in this case a set of stripes, which is then projected onto
the target object. The digital camera ”sees” the structured
light distorted if the object is not plane. Using these im-
ages combined with the relative positions and orientations
of the sensor-emitter pair, we are able to extract the depth
information using optical triangulation.
Some works involving structured light acquisition are de-
scribed in [2, 3], but they usually require more input im-
ages. Moreover, if the sampled ranges reach a certain den-

sity, zooming in on the object will begin to cause aliasing
effects, which is manifested as steps. This is due to the
pixel-accurate edge detection in the sensored image which
leads to a pixel-accurate triangulation. Typically subpixel-
accurate edge detection requires multiple input images. A
remarkable solution, which uses a sequence of a shifting
illumination has been proposed by Curless and Levoy [4],
namely the space-time analysis approach. However, using
dynamic programming to compute correspondence can still
cause errors such as mislabeled edges as a result of unde-
tected edges and inappropriate shape of the object.

Figure 1. The optical triangulation devices.

To solve these problems, we propose a few modifica-
tions. More specifically, we are seeking to design a struc-
tured light system that is able to reach subpixel accuracy us-
ing one single input image, increase the robustness against
mislabeling and achieve better edge detection. This paper
is organized as follows. In section 2, we formulate the com-
plete architecture of our acquisition system in a pipeline.
In section 3, we briefly show some results from our color
encoded triangulation system and discuss some remaining
problems. Finally, a summary and propositions for future
work are suggested in section 4.

2 A Shape Reconstruction Architecture

This paper focuses on range acquisition using a video pro-
jector and a digital camera. We obtain subpixel accurate
range maps with a calibrated emitter-sensor pair. We need
the camera and video projector extrinsic parameters (ori-
entations and positions in space), as well as the intrinsic



parameters, such as the focal length, before any triangu-
lation can be performed. A notable solution to this non-
trivial calibration problem has been proposed by Zhang [5],
which can be adapted to a simultaneous self-calibration of
the camera and the projector using stereo calibration tech-
niques from [6] . Range acquisition is followed by a regis-
tration process which merges the different range maps in
one point-cloud. Finally, we construct a mesh from the
point-cloud and extract view independent textures in order
to visualize material properties. An overview of the com-
plete process is illustrated in Figure 2.

Pattern

Generation
Projection Acquisition

Edge Labeling
Stripe Edge

Detection
Image Clean-Up

Optical

Triangulation

Subpixel Accurate

Repositioning
Post-Processing

Scene Object

Point Cloud
Camera and Projector
Calibration Parameters

start

end

Figure 2. An overview of the shape reconstruction archi-
tecture.

2.1 Color Encoded Structured Light Pattern

To speed up the acquisition process, we project multiple
stripes onto the object. To reliably identify the stripes in
an image, it is necessary to carefully design an appropriate
stripe pattern. We briefly review the color encoded stripe
pattern based on De Bruijn sequences suggested by [1].

Let pi = (pr
i , pg

i , pb
i ) ∈ {0,1}3 denote one of 8 dif-

ferent colors with pc
i being its intensity in each channel

c ∈ {r,g,b}. Then

P = (p0,p1, . . . ,pN)

represents a sequence of N + 1 colored stripes projected
onto the object. The first color p0 and the differences
di = pi+1 − pi, computed in Z

3
2, also represent P since

pi+1 = pi +di = piXORdi. Because successive stripes have
different colors, we require di 6= [0,0,0]t . To enhance
recognition, we choose P such that D = (d0,d1, . . . ,dN−1)
is a k-ary De Bruijn sequence of order n, where k = 7 and
N < kn. In a k-ary De Bruijn sequence of order n, any

sequence of n or more consecutive elements appears only
once. Hence the maximum length is kn. We precompute D
for different values of n with the recursive algorithm avail-
able online [7].

2.2 Input Image Clean-Up

Detecting edges between stripes is hampered by noisy im-
ages due to sampling quantization, unfavorable lighting cir-
cumstances, object textures, camera CCD capturing noise
and especially the low pixel density of the projector’s LCD.
Also, it is only possible to project a sharp image at a spe-
cific distance which is dictated by the depth of focus of
the projector. Another problem is that the shape of the ob-
ject might be self-occluded and the color of the projected
pattern might not exactly correspond to the acquired one.
All these factors make consistent edge detection difficult.
Hence, we propose to purge the images in three steps.
First, we take care of the color crosstalk phenomenon,
which is often due to uncalibrated colors projected by the
emitter and acquired by the sensor and is also due to the
surface that modifies the projector color spectrum in un-
known ways. As proposed by Caspi et al. [3], we assume
that the reflected light depends linearly on the emitted light
in each color channel and that the instruction color matches
perfectly the emitted color. Hence, we can normalize the
image color separately in each pixel by linear transforma-
tion such that the black light and the white light projections
have black and white images respectively. Since the am-
bient light, which is generated by a black light projection,
is neglectible, we assume that black light emission leads to
black images with all color values equal to zero. Further-
more, the acquisition process is performed in a completely
dark room. This reduces the intervention from light sources
other than the projector light.
Second, we remove dark areas from the image, where the
light intensity is below a user defined threshold. This elim-
inates the background and pixels hidden to the emitter.
Third, an optional final smoothing can be applied if the ac-
quired image remains too noisy for further processing. As-
suming an additive white Gaussian noise over the image,
we filter out high frequency noise using a simple approxi-
mated low-pass filter. This noise reduction pass should be
used carefully as excessive smoothing can make the stripe
edge detection even more difficult.

2.3 Color Stripe Edge Detection

2.3.1 Multi-spectral Definition of Edges

For edge detection to be as consistent and as accurate as
possible, it is crucial to have a formal definition of edges
in multi-spectral images. We use Cumani’s definition of an
edge [8] in color images and we assume that the vertical
oriented stripes w. r. t. the camera form the edges we are
looking for. This implies that only a 1-dimensional edge
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Figure 3. Input image of a structured light projected Beethoven bust (a). A shot of the white pattern projection (b) is required
for the colorimetric calibration. A comparison of the edge-detection is shown in the next two figures. A visualization of the
color edge detection (c). An improvement can be attained by restricting 5 consecutive detected edge pixels (d).

detection in the rows of the image is required. Let ri be the
rgb-color vector of the ith pixel. The square local contrast
ci = (∆ri)

2 = ‖ri+1 − ri‖
2
2 corresponds to an edge if ci −

ci−1 > 0 > ci+1 − ci. This implies that edges are separated
by at least two pixels.

2.3.2 Consecutive Edge Pixels Restriction

Edge detection as described in the previous section might
not suffice for our application. We might detect undesirable
shading contrasts in addition to color transition contrasts.
Therefore, we report an edge only if no other edge with
higher square local contrast is found within the next M pix-
els, where M ≥ 2. We set M to be slightly smaller than the
average stripe width in the image so that the advantage of
detecting the correct edges outweighs the drawbacks of not
detecting an edge as demonstrated in Figure 3 with M = 5.

2.4 Edge Labeling

With the labeling process, we re-identify the projected
edges from the observed image. The method based on
multi-pass dynamic programming proposed by [1] is very
well suited for solving the problem of labeling multiple
color-encoded edges, especially in the case of holes and
self-occlusions in the scanned surface that yield unde-
tectable edges.

Labeling means to match for each scan-line the pro-
jected stripe sequence with the captured stripe sequence.
We match the stripe color transitions and obtain the pro-
jected color transition sequence

q j = p j+1−p j =





qr
j

qg
j

qb
j



∈{−1,0,1}3 , j = 0, . . . ,N−1,

and similarly the captured color transition sequence

ei =





er
i

eg
i

eb
i



 ∈ [−1,1]3 , i = 0, . . . ,M−1 .

A labeling is defined by a set of P matches

Φ = {( j1, i1), ...,( jk , ik), ...,( jP, iP)}

with

( jk, ik) ∈ {0, . . . ,N −1}×{0, . . .,M−1}

and

j1 < j2 < .. . < jP , i1 < i2 < .. . < iP .

Consistency between a detected edge ei and projected edge
q j is measured by a scoring function defined as

score(q j,ei) = min
c∈{r,g,b}

{consistency(qc
j,e

c
i )}

with consistency(qc
j,e

c
i ) as illustrated in Figure 4. Thus, the

score of a labeling is defined as

σ(Φ) =
P

∑
k=1

score(q jk ,eik )

and the optimal labeling is given by

Φ∗ = argmax
Φ

{σ(Φ)} .

Typically for dynamic programming approaches, we recur-
sively compute a cost matrix S = [s ji] containing the scores
of optimal sub-labelings as follows:

s ji =

{

0 , if j = 0 or i = 0
max{s j−1,i−1 + score(q j ,ei), s j−1,i, s j,i−1}

.

Finally, we backtrack the cost matrix to obtain an optimal
labeling.



In practice, we often observe mislabeled edges. We must
expect repeating subpatterns of size smaller than n within
our De Bruijn pattern of order n. Also in many cases, the
scanned object covers only part of the complete stripe pat-
tern. Moreover, our dynamic programming approach eval-
uates the cost matrix in a bottom up fashion, which cor-
responds to a scanning direction from left to right. These
situations often cause wrong matches. The problem lies in
the lack of stripe information caused by the empty back-
ground of the shape and by shadows. Putting a white plane
behind the object during the stripe projection and caption
therefore reduces the effect of the empty background. In
this way, the previously missing stripes can be recovered
on the wall and will fix the ambiguity problem.
To solve the occlusion problem, we use the multi-pass pro-
cedure proposed in [1]. This increases the runtime by a
factor of order O(N). In practice, objects that contain too
many occlusions might already fail the edge detection stage
due to high shading frequencies that increase with the ob-
ject’s shape complexity.

Figure 4. The consistency function.

2.5 Subpixel Accurate Repositioning

For the optical triangulation pass, we use our previously la-
beled edges that were detected in the input images. These
input images are pixel arrays recovered from the CCD of
the camera. It is obvious that from a pixel accurate edge
detection, we are only able to triangulate the image at pixel
accuracy. This imprecision is manifested by jagged alias-
ing effects when the final object is zoomed in. In order to
produce high precision scanned results, many approaches
have been suggested. Zhang et al. [1] adapt the space time
analysis technique on this colored structured light approach
with the disadvantage of requiring multiple input images of
a shifted De Bruijn pattern. We show how edges with sub-
pixel accuracy are detected from a single image. This will
consequently produce a subpixel accurate range map. An
edge that has been detected between two pixels typically is
positioned exactly between these two pixels. To avoid the
undesired quantization errors, we exploit the light intensi-
ties of these pixels to approximate a subpixel accurate posi-
tion, similar to the linear boundary interpolation approach
described in [9]. As explained in Section 2.3.1, we detect

Figure 5. Pixel accurate optical triangulation without (left)
and with subpixel accurate repositioning (right).

an edge if ci−ci−1 > 0 > ci+1−ci. Rather than positioning
the edge at x = i+ 1

2 , we place it at the subpixel position

x =
(i+1) · (ci− ci−1)− i · (ci+1− ci)

2ci − ci+1 − ci−1
.

2.6 Optical Triangulation

Figure 6. A projected stripe transition represents a plane
and a pixel on the CCD of the camera represents a ray of
sight. Depth is extracted by computing a ray-plane inter-
section.

Once we successfully label the detected edges on the
captured image with the corresponding stripe transitions on
the projected pattern, we are able to compute the depth
information of these edges. The vertical stripe transition
pattern we are projecting on the object represents a set of
vertical planes passing through the central point of the pro-
jector. On the other hand, an edge on the sensor image
corresponds to the line of sight that intersects the projected
planes in one single point. The optical triangulation with a
stripe pattern has been reduced to a ray plane intersection,
which is straightforward to compute.

2.7 Artifact Elimination through Meshing

In our experiments, we observed that most areas of the
range map are still seriously affected by noise. Badly tri-
angulated points are scattered all over the object. This is
due to the difficulty in detecting the projected stripe edges



Figure 7. After meshing the triangulated points, artifacts
appear in the visualization of the triangle surface (left). An
additional orientational face culling reduces most artifacts
due to wrongly labeled or detected edges (right).

in high frequency shading areas, that results in bad label-
ing and subsequent wrong triangulation. We therefore de-
signed a post-processing algorithm to annihilate the trian-
gulated points that are unlikely to be part of the object.
Although this might cause fewer triangulated points, i. e.,
more holes in the end result, it is more important to acquire
correct than more data. If the ith projected edge is detected
in row j of the image, we compute a point pi j of the ob-
ject in space as described in section 2.6. Two points pi j

and pkl are called neighbors if (k, l)− (i, j) ∈ {−1,0,1}2.
Three points that are neighbors to each other form a trian-
gle. First, we remove those triangles that are not visible
to the camera and the projector. This is simply a back-
face culling algorithm that computes the scalar product of
the triangle surface normal with the normalized direction
of the line of sight to the center of this triangle. Triangles
with negative values are omitted. Furthermore, we leave
out back-faced surfaces and surfaces with normals that are
almost orthogonal to the direction of the line of sight. In
practice, depending on the shape of the object, an angle α
of up to 60 degrees between the surface normal and the line
of sight vector is accepted. Second, we remove all points
pi j that are not part of any triangle.

3 Results

Our experiments focus on the acquisition of the Beethoven
bust shown in Figure 3 and a skull model (Figure 9). The
complete acquisition process takes less than a minute of
computation time.
Results have shown a remarkable improvement in terms
of subpixel accuracy. While pixel accurate triangulated
point clouds show a jagged aliasing effect when zoomed
in, an approximated gradient of the square local contrast
produces smooth transitions within neighboring ranges as
illustrated in Figure 5.
We also observed that the edge detection, based on a re-
stricted consecutive edge pixel occurrence is quite effective

when it comes to annihilating artifacts in high frequency
shading areas (Figure 3). The only disadvantages are the
additional parameter that has to be set manually and the
few less detected edges. This step is indispensable for a
usable stripe edge extraction from complex shape objects.
The post-processing through meshing and face orientation
culling also has a radical impact in terms of noise reduc-
tion. A large amount of wrongly triangulated ranges can
be removed (Figure 8), but also at the cost of an addi-
tional parameter and less extracted ranges. Multi-pass dy-

Figure 8. Point cloud without (top) and with (bottom) white
background plane and artifact elimination for α = 90◦ (left)
and α = 60◦ (right).

namic programming, which solves the matching problem,
has achieved satisfactory results except at the boundary of
the objects. Due to the greedy property of the backtrack-
ing phase in dynamic programming, undesired matches are
added for a global optimal solution. These artifacts are
either removed by post-processing meshing as mentioned
previously or by setting a plane wall behind the object to re-
cover the unreflected stripes on the object. This simple so-
lution enables the dynamic programming algorithm to start
and end with correct matches as demonstrated in Figure 8.
However, this solution has the drawback of requiring an
additional frame without the background to extract its sil-
houette. This frame is taken from the white illumination of
the colorimetric calibration. To circumvent this additional
frame, we can use a depth threshold w. r. t. the camera’s
position. Every point above a certain threshold is omitted.
While improvements have been achieved with a few ex-
tensions, it is still difficult to detect correct edges when it
comes to stripe segmentation from the capture. This is due



to the high curvature areas in the object and unsuitable ma-
terial reflection properties. Moreover the projector is only
able to project sharp images from a specific distance to the
object. In other words, only edges on a plane at a specific
distance are sharp, which is restricted by the depth of focus.

Figure 9. Reconstruction of a skull model (top) and its basis
cranii (bottom) using a pattern of 125 stripes. Each point
cloud is obtained from only two input images.

4 Conclusion and Future Work

In this work, we have examined the structured light system
proposed by Zhang et al. [1], which uses multi-pass dy-
namic programming to solve the correspondence problem,
and we have performed some modifications to achieve sub-
pixel accuracy, less erroneous matching during the label-
ing and better robustness against noise. Subpixel accuracy
from one single frame is attained by approximating the gra-
dient of the square local contrast with a piecewise linear
curve. The labeling process is stabilized at the object’s
boundary by considering a plane background during the
pattern projection acquisition. The noise is reduced with
an extended edge detector and a post-processing procedure

based on meshing and face orientation culling.
With the aim of less human inputs, we intend to integrate
a simultaneous self-calibration for the projector and for the
camera, including an off-line colorimetric calibration for
real one-shot pattern acquisition. In addition, we hope to
find a way to automatically determine the required thresh-
olds during the edge detection by analyzing statistical prop-
erties of the color and light intensities of the images. Fi-
nally, we hope to complete the structured light scanning
system with multi-view registration and texture reconstruc-
tion stages, both equally important.
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