Fan Clouds — An Alternative To Meshes

Lars Linsen! and Hartmut Prautzsch?

! Center for Tmage Processing and Integrated Computing (CIPIC)
University of California, Davis*
1llinsenQucdavis.edu
2 Institut fiir Betriebs- und Dialogsysteme (IBDS)
Universitat Karlsruhe, Germany**
prau@ira.uka.de

Abstract. A fan cloud is a set of triangles that can be used to visualize
and work with point clouds. It is fast to compute and can replace a
triangular mesh representation: We discuss visualization, multiresolution
reduction, refinement, and selective refinement. Algorithms for triangular
meshes can also be applied to fan clouds. They become even simpler,
because fans are not interrelated. This localness of fan clouds is one of
their main advantages. No remeshing is necessary for local or adaptive
refinement and reduction.

1 Introduction

The real-time rendering of complex three-dimensional scenes is a challenging
problem in computer graphics. Multiresolution methods can be used to reduce
the complexity of a scene by adapting the level of detail to the viewing param-
eters.

In this paper, we present multiresolution methods for point clouds or, more
precisely, for fan clouds. Fan clouds are sets of local triangulations and obvi-
ate a more costly triangular mesh generation. In Section 3, we present their
construction. The visualization of fan clouds is straight-forward.

Contrary to the point cloud rendering techniques in [1,29,40,44,47], fan
clouds provide a surface representation that can also be used for surface modeling
and other processing operations. Thus, for most purposes, fan clouds can sub-
stitute triangular mesh representations. However, if required, triangular meshes
can be generated quickly from fan clouds as discussed in Section 4.

In Section 5, we define an entropy or importance measurement for the points
of a point cloud and use it for data reduction. The entropy of a point depends
on its surrounding fan and is also defined for triangular meshes. Each reduction
step leads to a coarser level of detail and we get a hierarchical sequence of fan
cloud representations.

* http://graphics.cs.ucdavis.edu
** http://i33www.ira.uka.de

In Section 6, we go into multiresolution for modeling purposes, where detail
is stored in a local frame. In Section 7, we discuss refinement for fan clouds
beyond the given resolution.

Furthermore, we look at selective refinement of fan clouds for static (Section
8) as well as dynamic scenes, where the shape of the objects may change due
to modeling, animation or simulation processes (Section 6). In particular, we
apply selective refinement to terrain rendering in Section 8. In contrast to trian-
gular meshes, fan clouds allow for adaptive refinement without any topological
restrictions and dependencies.

Since fan clouds are local triangulations, all the introduced fan cloud process-
ing algorithms can be run in parallel as well as by using out-of-core techniques
when dealing with large-scale objects.

2 Related work

Wavelets for multiresolution methods in computer graphics are discussed in de-
tail by Stollnitz et al. in [45] for curves and meshes with subdivision connectivity.
While Eck et al. [17] remesh arbitrary meshes to generate subdivision connec-
tivity, Kobbelt et al. [31] as well as Guskov et al. [21] develop multiresolution for
arbitrary meshes. In [28], multiresolution is further generalized to non-manifolds
models. A survey is given in [32].

Mesh reduction is often based on the deviation of the reduced mesh from the
original one. Such a reduction approach is common, e.g., in terrain rendering
(cf. [14,16,20,27,33, 38,43,46]). In addition, one can take into account topolog-
ical aspects [24], edge lengths [24], curvatures [22,30], normals and colors [8],
or textures [10]. In all these approaches, some energy is defined and minimized.
This results in reduced meshes with high fairness.

Selective refinement is commonly based either on constrained or arbitrary
mesh connectivity. Constrained mesh connectivity comes with regular height
fields, in general. Duchaineau et al. [16] and Lindstrom et al. [33] use binary
tree hierarchies of subdivided right-angled isosceles triangles. Gross et al. [20],
Pajarola [38], and Rottger et al. [43] prefer quadtree hierarchies and subdivide a
rectangle into four equal rectangles. For the visualization, each rectangle is split
into two triangles.

All these approaches suffer from the same problem shown in Figure 1 for
quadtrees. Not all refinement steps lead to a valid mesh. In the figure, cracks
appear in the surface due to the different refinement levels of adjacent quadtree
blocks. Gross et al. [20] overcome this problem by generating a look-up table
of all valid refinements, while Pajarola [38] as well as Rottger et al. [43] define
restricted quadtrees and preserve the restriction by extra refinement steps. Re-
stricted quadtrees requirement means that adjacent quadtree blocks differ by at
most one level in the hierarchy.

This constrained mesh connectivity requires more triangles for a given ac-
curacy than arbitrary meshes (cf. [14,25-27,46]). De Floriani et al. [14] use a
multi-triangulation for a multiresolution representation of surfaces. They define

Fig. 1. Corresponding surface after selective refinement of height fields using a quadtree
hierarchy.

local refinement steps and dependencies between them, which lead to a partial
order of the refinement steps stored in a directed acyclic graph. Each subgraph
that contains all parents of each of its nodes provides an arbitrary mesh repre-
sentation of the surface.

Hoppe [25-27] as well as Xia and Varshney [46] use the vertex split refinement
operation and its inverse, shown in Figure 2, to locally modify the level of detail of
an arbitrary mesh representation. For a vertex split, they require that the four
triangles Ay,..., A4 are active. If one of them is not active, other refinement
steps are needed before.

S

Fig. 2. A vertex split is executed only under certain preconditions.

By a sequence of edge collapses a fine mesh M™ can be transformed into
a coarsest mesh MO [26,27,46]. The vertices of M, M™ and all intermediate
meshes M form a vertex hierarchy. It can be represented by a forest, in which
the root nodes are the vertices of M and the leaf nodes are the vertices of M™.
Any intermediate mesh M? corresponds to a vertex front through the vertex
hierarchy and represents a selective refinement of M°. An example is illustrated
by the colored nodes in Figure 3. Note that there may be invalid vertex fronts due
to the restrictions for vertex splits. Establishing the forest can be done off-line
in a preprocessing, which reduces the computations for real-time applications
during runtime.

Point clouds can be rendered without generating a triangular mesh: One can
use splatting methods [1,29,40,44,47] (also called point-based rendering), which

& 8 @
@e@
doe® O
oo

Fig. 3. A selectively refined mesh M in the vertex hierarchy, which is represented by
a forest.

require dense point clouds and need much preprocessing, or fan clouds [34, 35].
In [39], point clouds are approximated by linear B-spline patches to perform
modeling operations.

3 Fan Clouds

An object can be represented by a sufficiently dense set of points on its surface.
Fan clouds are simple, very local structures to work with point clouds. They have
been introduced and discussed in [34]. To prepare for the following, we briefly
recall their construction.

For each point p of a point cloud, one computes a k-neighborhood consisting
of k pointers to points py,...,p; of the cloud close to p as described further
below. The neighbors are determined such that the k triangles pp;p;,, form a
fan that approximates the neighborhood of p on the surface represented by the
point cloud. The set of all triangle fans is what is called a fan cloud.

To determine a k-neighborhood of a point p, one determines the k near-

est neighbors py,...,p;, computes the plane P with the least sum of squared
distances to p,py,-- ., Py, and projects all points into P. Then one sorts, i.e.,
permutes the indices of py, ..., Py, such that the projections q; of p; lead to an

increasing sequence of angles ¢; = /q;qq;, where q is the projection of p. In
this order, the points p; form a triangle fan or k-neighborhood of p, see Figure
4.

P,

WAV,

Fig.4. A k-neighborhood for k = 5.

1

If the point density varies sharply around p, then the neighborhood may not
enclose p. Therefore, if Vy; = ¢; — p;—1 > 90°, one replaces p,;, by the (k+ 1)st
neighbor and if necessary by further next neighbors till the angle criterion V; <
90° is met, or a certain threshold number of replacements has been reached.

Along sharp edges, the best fitting plane may be normal to the surface, see
Figure 5. Therefore, if the angle criterion cannot be satisfied, we rotate the fitting
plane around the axis q;_;q; by 90° and try again to build the neighborhood.

best fitting plane

P,

Fig. 5. Best fitting plane for an edge point viewed along the plane.

If the angle criterion can still not be met, we assume that p,_;, p, p; lie on
the boundary of the surface.

Note that a triangular mesh with n vertices has about 2n triangles, whereas
a fan cloud consists of kn triangles, where k¥ = 6 is a typical number we have
used. However, storage costs are not higher for fan clouds. For each point p, we
store a list of pointers to its neighbors py,...,p,. This is also the most efficient
way to store a triangular mesh.

4 Triangular mesh generation from fan clouds

Triangular meshes are commonly used in Computer Graphics to represent sur-
faces. Therefore, in the nineties, various approaches were presented to generate
triangular meshes from point clouds. The algorithms are based on spatial sub-
division (e.g. [2,4,13,23]), Delaunay tetrahedrization (e.g. [3,7,18]), distance
functions (e.g. [13,23]), warping (e.g. [2]), and incremental surface-increase (e.g.
[5,7,12,19,36]). A survey is given in [37].

From their construction, we cannot expect fan clouds to provide a continuous
surface representation. However, in all our experiments, we found that fan clouds
are very much like triangular meshes, see Figure 6(a). In fact, they contain the
triangles of a connected triangular mesh as a subset. Many triangles in our fan
cloud are identical. Without duplicates, the fan clouds have about 2.5n triangles.
Further, there are quadrilateral regions covered by three or four triangles of a
fan cloud, i.e., by one or two superfluous triangles. Removing these superfluous
triangles reduces the number of triangles to about 2.1n, see Figure 6(b).

We observed that the reduced fan clouds are already triangular meshes with
regions that are covered by several different triangulations. To obtain a 2D mesh

(c)

Fig. 6. The fan cloud in (a) is reduced to 2.1n triangles in (b) and further reduced to
a triangular mesh in (c).

manifold from a reduced fan cloud, we simply grew a triangular mesh by suc-
cessively adding on triangles. The result is illustrated in Figure 6(c). It has
few (0.01%) self-overlaps, since we neglected any geometric aspects and based
the construction only on topological aspects. Since by construction there are
no edges with three ore more coincident triangles, the overlaps correspond to
holes that fold back onto themselves as illustrated in Figure 7, where we have
a quadrilateral hole marked by heavy lines. It is possible to avoid self-overlaps
and to prove, then, the correctness of the triangulation [41].

Shaded versions of the objects in Figures 6(a) and 6(c) are shown in Figures
8(a) and 8(b), respectively.

This triangulation method is fast. The construction is similar to the approach
given by [12], but uses no additional information such as point classification. The
computation times of triangular mesh generations via fan clouds (incl. fan cloud
generation) are given in Table 1. Since the neighborhoods for typical point clouds

Fig. 7. Self-overlapping four sided hole (heavy lines).

(b)

Fig. 8. Comparing fan cloud visualization (a) with triangular mesh visualization (b).

can be computed in linear time using spatial subdivision, fan clouds can be
generated in linear time. For spatial subdivision, we use a 3D-cell rasterization,
such that for each neighborhood estimation we only have to search in a constant
number of cells containing a constant number of points.

5 Reduction

Mesh reduction means to approximate a given mesh by a coarser mesh within
some tolerance. Often the underlying surface is assumed to be fair and reduction
is guided by the notion that it helps to minimize some fairness energy [30]. With
point clouds the reduction principle is simpler. We only remove points without
constructing some approximating surface. Hence, we try to find a small subset
of a given point cloud that still is a good representation for the object.

Since fan cloud generation is fast, the reduction scheme can be applied to
large-scale data sets. Exploiting the local data structure of fan clouds, the reduc-

| method | F#points | computer | time |

Fan cloud generation 47109 | SGI Indigo2 Extreme 45's
Sun Ultra30 13 s

PC with Athlon K7 800MHz | 5 s

100001 17 s

160940 25 s

Global triangulation 20021 | PC with Athlon K7 800MHz | 4s
via fan cloud 35948 8s
160940 41's

Table 1. Computation times for fan cloud generation and global triangulation via fan
cloud.

tion scheme can also make use of out-of-core techniques and distributed com-
puting.

For fan cloud reduction, we introduce an entropy that encodes for each point,
how much information it contributes to the geometric information of the surface.
Similar to common fairing energies the entropy is based on point distances, color
information, curvature estimates, and change in curvature. The main difference
is that we try to keep the entropy high rather than to minimize it.

An object like a sphere has an homogenous shape characteristic. In such
situations a point that is close to its neighbors is less important than a point
with large distances d; := [|q; — p||2 to its neighbors qq, . .., q;. Thus, we define
the measure

Mdlst

?r‘l'—‘

for each point p of the point or fan cloud.
n; nIIz

.7
where n and n; are the normals at p and q;, respectively. Note that, actually,

Further, we estimate the curvature at p in the direction of any q; by

this is a (in d;) linear approximation of v/k? + 72 = ||n’||2, where & is the normal
curvature and 7 the geodesic torsion at p in the direction q; — p, see e.g. [6].
Hence, this estimate also measures the torsion or non-planarity of geodesics on
the surface. Averaging these terms for all neighbors of p leads to the measure

Z ||nJ - n||2
CUI‘V

of the curvature and geodesics torsion at p.
Defining the change of curvature at p by

?r-lv—i

i curv q] Mcurv(p)|

d;

and the change of color at p by

k
\(p) = _1 Z ||CJ - c||2
CO . k' ~ ’

where ¢ and ¢; contain the RGB-encoded color information at p and q;, we get
the entropy M (p) at p,

M(p) := o1 Maist (P) + 2 Meury (P) + a3 Mee(P) + s Meal(p)

with adjustable weights a1, ..., a4.
To make the terms of the entropy scale-invariant, we define the average dis-
tance between neighbored points

1= Y,

PEP j=1

where P is the point cloud and n its size, and divide the term My (p) by d,
multiply the terms Mcyry(P) and Meoi(p) by d and multiply the term Mc.(p;)
by d2.

The fan cloud rendered in Figure 9(a) is reduced to 42% using the above
entropy with aq, a2, a3,a4 = 1,0,0,0 in 9(b) and ay,as,a3,as = 1,1,50,0 in
9(c). We iteratively remove a point p with lowest entropy and recompute the
entropy of all points that had p as a neighbor. For Figures 9(d), 9(e), and 9(f),
we zoom into one region of Figures 9(a), 9(b), and 9(c). Clearly the loss of surface
features is dramatic in 9(e) and negligible in 9(f).

Figure 10 gives a comparison of reductions applied to a colored fan cloud.
The fan cloud in (a) shows part of the Grand Canyon. In (b), (c), and (d), it is
reduced to 17.6%. In (b), the approximation error is minimized (see Section 8). In
(c) and (d), we preserved the entropy as much as possible, where a1, a2, as,as =
1,0,0,0 in (c), which results in an almost equal distribution of the points, and
a1, a9, a3,a4 =1,1,50,1in (d). Again, preserving the entropy maintains salient
curvature and color features best.

Note that the entropy-based reduction can also be applied to triangular
meshes. Furthermore, recently developed point-based rendering techniques [1, 29,
40,44,47] as well as hybrid (point-based/triangle-based) rendering approaches
[9,11] can be combined with this fan cloud reduction scheme.

6 Level of Detail

Successively removing points from the original fan cloud and adjusting the tri-
angle fans, that contained the removed point, leads to a hierarchical sequence of
fan clouds. We can switch back to any finer resolution in this hierarchy by rein-
serting points that have been removed. To accommodate for shape modifications
at some lower resolution, we use for each point that we remove local rather than
global object coordinates as described in [21,31] for triangular meshes.

10

Fig. 9. Reducing a fan cloud (a),(d) to 42% only by considering distances (b),(e) or by
considering distances and surface features (c),(f).

Examples and applications of the level-of-detail control combined with vari-
ous modeling operations are given in [35].

Furthermore, to reduce complexity of a large object, one can speed up the
visualization by a selective refinement, i.e., we extract and visualize the point
cloud with a fine resolution only in the region of interest. We proceed as above,
i.e., we update the positions of all points in the reverse order of their removal,
but we only activate, i.e., reinsert the points within the region of interest.

In Figure 11, we give an example. To distinctly illustrate the selective refine-
ment, the points are visualized, too. The point cloud in (a) consists of 14379
points and is reduced to 2156 points as shown in (b). In (c), we see the point
cloud after a global smoothing. Finally, the face of the represented bunny is se-
lectively refined. The result in (d) consists of only 3031 points, but in the region
of interest full detail information is available for further modeling purposes.

7 Refinement

For some applications in modeling and animation, it can be necessary to re-
fine a point cloud beyond its given resolution, or in other words to extend the
hierarchical sequence above beyond its finest level.

11

(c)

Fig. 10. Fan cloud (a) reduction based on approximation error (b), distances (c), and
entropy (d).

To insert a new point r, we determine the point p with highest entropy M (p),
its neighbor, say q; , with highest entropy, and the predecessor or successor of q;,
say qs, in the neighborhood of p with highest entropy. We compute the weights

W= M(p)
T M(p)+M(ai1)+M(az)

Wy = M(q1)
1= M(p)+M(q1)+M(qz)

Wo = M(qz)
2 -~ M(p)+M{ar)+M(az)

and define the initial position of the new point by
r:=wp+wiq; + w24, -

In general, r does not lie on the surface represented by the point cloud.
Therefore, we move r in the direction of the surface normal. In [15], the mean
curvature normal vector is approximated by

_ 104
= 54%r

where A is the area of the fan of r. One can easily show that this is an affine
combination of the form
n, = qor — Zairi)
i

12

Fig. 11. Selective refinement (d) of a point cloud (a) after reduction (b) and modeling

(c).

where r; are the neighbors of r. We set

and

o % ’
i C0 24P

where

p=wl[Opll2 + willOalls + w2(|0qzll2 -

Since the «; do not change when r moves (not too much) in the normal direction,

we get OT ~ p.

If ¢, c1, and co are the colors of p, q; and q,, the new point r gets the color

we + wiC1 + wacs .

13

To validate our approach we have applied a reduction-refinement-cycle to
the point cloud shown in Figure 12(a) ten times. The reduction-refinement-cycle
switches between the levels 100% and 50% without storing detail information.
The result in Figure 12(b) illustrates, that the shape of the object remains almost

unaffected. Note that we used the definition of ¢ given in [34,35] to produce
these Figures. This definition is different but very similar to the above.

(b)

Fig. 12. Fan cloud (a) and iterated reduction/refinement (b).

8 Selective Refinement

The reduction described in Section 5 is only based on local object information.
However, it is also possible to base a reduction decision on global information.
In particular, for large objects, it is useful to consider positions relative to the
viewer and use a lower resolution for invisible or distant parts of an object.

Such a view-dependent reduction or refinement is considered in [26, 27], where
Hoppe proposes a view-dependent progressive mesh (VDPM) framework to ren-
der large terrain models. Using fan clouds instead of meshes, we present a few
improvements to Hoppe’s idea and speak of a view-dependent fan cloud (VDFC).
As described in Section 2, Hoppe [26, 27] builds (in a preprocessing step) a forest
from a given mesh by successive half-edge collapses. We also build such a forest.
However, rather than only using half-edge collapses, we also tried to successively
merge the point p with lowest entropy M (p) with its neighbor q with lowest
entropy M (q) into the new point

_ M(p)p + M(a)q
M(p) + M(q)

The neighbors of r are the neighbors of p and q except for p and q.

14

With this merge, we obtained better results than with the half-edge collapse,
which is also used in [42,46]. Figure 13 shows an example where we reduced the
point cloud of Figure 10(a) to 17.6% by half-edge collapses (a) and by the point
merges above (b).

(a)

Fig. 13. Reducing the terrain of Figure 10(a) by applying half edge collapses (a) or
point merges (b).

Note that, here, different points may become differently many neighbors.

As mentioned in Section 2, Hoppe allows a vertex split only if certain neigh-
bors exist as during the collapse. Here, there are no such conditions. If, during
visualization, a neighbor q of an active point p is not active, we use the active
ancestor of q in the forest hierarchy rather than executing further refinement
steps.

We do not know if fans can become invalid neighborhoods. Figure 14 de-
picts such a theoretical case for a triangular mesh. Hoppe does not mention this
problem and we did not encounter it in all our experiments with fan clouds.

(a) (b)

Fig. 14. Triangulation before (a) and after (b) a point merge.

The view-dependent refinement of a terrain is based on a selective refinement
due to visibility, distance, and viewing direction. Points outside the view frustum
are not active and the resolution increases toward the viewpoint.

To control the resolution or level of detail, we estimate for each point r in the
forest the local deviation of its current triangle fan T from the original fan cloud.
When r is obtained by a point merge, we compute the maximum deviation from

15

all its descendants to T and denote it by e(r). Later, when we run the view-
dependent visualization, r becomes part of the active point cloud, if it lies in the
view frustum and if

d(r)

dmam

e(r) >

emaz bl

with d(r) the distance of r from the viewpoint, d,., the range of sight, and
emaz the maximum approximation error.

Note that the triangle fan T' used to compute e(r) may differ from the active
triangle fan of r used to render the object. However, we used 7' to be able to
compute e(r) in the preprocessing step.

Hoppe [26] as well as De Floriani et al. [14] and Xia and Varshney [46]
work with triangular meshes, which they consider as piecewise linear functions
over R2. Consequently, they define e(r) to be the maximum functional differ-
ence between T and the relevant part of the initial fine mesh, i.e., between two
approximations. Also, they compute e(r) during the visualization.

Large terrains are usually partitioned into blocks such that adjacent blocks
share the points on their common boundary. Under a so called dynamic scene
management, only blocks within the range of sight are considered. For stitching
blocks together, the same points on their common boundary have to be active.
Thus, in the preprocessing step, we exclude boundary points from point merges.
Then, after having established the forests for the single blocks, we unite the
blocks and perform further point merges including the boundary points. Without
these further merges, the boundaries become visible in the shaded visualization.

Figure 15 shows a view-dependent refinement of a terrain in point cloud rep-
resentation. In (a), we show the point cloud and in (b) its shaded visualization.
The viewing points used for the view-dependent refinement and the visualization
in Figure 15 are different. In Figure 16 these viewing points are the same.

9 Conclusion

In this paper, we have shown

— that multiresolution techniques, well-known for triangular meshes, can also
be applied to fan clouds,

— that entropy-based reduction of fan clouds or triangular meshes maintains
characteristic features better than energy-based reduction,

— that selective refinement underlies no restrictions with fan clouds,

and we have introduced a refinement algorithm to refine a point cloud beyond
its initial resolution.

Fan clouds can be computed efficiently and faster than triangular meshes.
Although, in general, they do not form a 2D manifold, they can be stripped
down to triangular 2D mesh manifolds.

The number of triangles in a fan cloud is higher than in a triangular mesh.
However, storage costs are not higher, and, moreover, there are many duplicates,

16

(b)

Fig.16. A selectively refined terrain from the viewpoint.

17

which we do not render. In fact, in the average, we have only 2.5 different trian-
gles per point and if we remove single redundancies even only 2.1 triangles per
point. When using the VDFC framework, the average number of triangles in a
selectively refined scene is even smaller, namely approximately 2.0 triangles per
point when we start with k£ = 6. This is about the same as for triangular meshes.

One of the main advantages of fan clouds is their complete localness. There-
fore, they are perfectly suited for local refinement, i.e., there is no remeshing
necessary in the transition areas between refined and unrefined parts of a point
cloud.

In particular, we can split any point at any time and need not check its
neighbors as in [26]. Also different from [26], we compute the approximation
error in a preprocess. Altogether, this implies that we can split points at almost
no extra cost during runtime, whereas in [26] the evaluation and preparation
costs for a split are four times higher than for its execution.

Moreover, since we have no restriction as to any mesh connectivity, we can
reduce the number of points to its minimum given by the error tolerance.

Another advantage of the VDFC representation above is the ease, with which
objects can be added to the scene. The VDFC representation of monuments,
places of interest, etc. can simply be added as further separate trees to the
forest of the terrain representation. Since neither the VDFC representation nor
the error estimation are based on a height field over some parameter plane, these
objects (and the terrain as well) can be of arbitrary shape, e.g. it is possible to
represent mountain ledges. Thus, the VDFC representation provides a framework
for all features of a three-dimensional geographical information system.

References

1. Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar Fleishman, David Levin,
Claudio T. Silva: Point Set Surfaces. Proceedings of IEEE Conference on Visual-
ization 01, 21-28, 2001.

2. Maria-Elena Algorri, Francis Schmitt: Surface reconstruction from unstructured 3d
data. Computer Graphics Forum, Vol. 15 (1), 47 - 60, 1996.

3. Marco Attene, Michela Spagnuolo: Automatic surface reconstruction from point
sets in space. Computer Graphics Forum, Vol. 19 (3), 457 - 466, 2000.

4. Chandrajit Bajaj, Fausto Bernardini, Guoliang Xu: Automatic Reconstruction of
Surfaces and Scalar Fields from 3D Scans. Proceedings of SIGGRAPH ’95, 109 -
118, 1995.

5. Fausto Bernardini, Joshua Mittleman, Holly Rushmeier, Claudio Silva, Gabriel
Taubin: The Ball-Pivoting Algorithm for Surface Reconstruction. IEEE Transac-
tions on Visualization and Computer Graphics, Vol. 5 (4), 349 - 359, 1999.

6. Wolfgang Boehm, Hartmut Prautzsch: Geometric Concepts for Geometric Design.
AK Peters, Wellesley, 1994.

7. Jean-Daniel Boissonat: Geometric Structures for Three-Dimensional Shape Repre-
sentation. ACM Transactions on Graphics, 266 - 286, 1984.

8. Swen Campagna, Hans-Peter Seidel: Generating and Displaying Progressive
Meshes. Proceedings of 3D Image Analysis and Synthesis, Erlangen, 35-42, 1997.

18

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.
27.

28.

. Baoquin Chen, Minh Xuan Nguyen: POP: A Hybrid Point and Polygon Rendering

System for Large Data Proceedings of IEEE Conference on Visualization ’01, 45—
52, 2001.

Jonathan D. Cohen, Marc Olano, Dinesh Manocha: Appearance-Preserving Sim-
plification. Proceedings of SIGGRAPH 98, 115-122, 1998.

Jonathan D. Cohen, Daniel G. Aliaga, Weiqiang Zhang: Hybrid Simplification:
Combining Multi-resolution Polygon and Point Rendering Proceedings of IEEE
Conference on Visualization 01, 37-44, 2001.

Patricia Crossno, Edward Angel: Spiraling Edge: Fast Surface Reconstruction from
Partially Organized Sample Points Proceedings of IEEE Conference on Visualiza-
tion ’99, 1999.

Brian Curless, Marc Levoy: A Volumetric Method for Building Complex Models
from Range Images. Proceedings of SIGGRAPH ’96, New Orleans, LA, 4-9 August
1996.

L. De Floriani, P. Magillo, E. Puppo: VARIANT: A System for Terrain Modeling
at Variable Resolution. Geoinformatica, Vol. 4(3), 287-315, 2000.

Mathieu Desbrun, Mark Meyer, Peter Schroder, Alan Barr: Implicit Fairing of
Irregular Meshes using Diffusion and Curvature Flow. Proceedings of SIGGRAPH
’99, 1999.

M. Duchaineau, M. Wolinsky, D. Sigeti, M. Miller, C. Aldrich, M. Mineev-
Weinstein: ROAMing terrain: real-time optimally adapting meshes. Proceedings
of IEEE Visualization ’97, 81-88, 1997.

Matthias Eck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery,
Werner Stuetzle: Multiresolution Analysis of Arbitrary Meshes. Proceedings of
SIGGRAPH ’95, 1995.

H. Edelsbrunner, E.P. Miicke: Threedimensional alpha shapes. ACM Transactions
on Computer Graphics, Vol. 13 (1), 43 - 72, 1994.

M. Gopi, S. Krishnan, C.T. Silva: Surface Reconstruction based on Lower Dimen-
stonal Localized Delaunay Triangulation. Computer Graphics Forum, Vol. 19 (3),
2000.

M. Gross, O. Staadt, R. Gatti: Efficient Triangular Surface Approzimations using
Wavelets and Quadtree Data Structures. IEEE Transactions on Visualization and
Computer Graphics, Vol. 2 (2), 130-143, 1996.

Igor Guskov, Wim Sweldens, Peter Schroder: Multiresolution Signal Processing for
Meshes. Proceedings of SIGGRAPH ’99, 1999.

Bernd Hamann: A data reduction scheme for triangulated surfaces. Computer
Aided Geometric Design, Vol. 11, 197-214, 1994.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle:
Surface Reconstruction from Unorganized Points. Computer Graphics, Vol. 26, 71
- 78, 1992.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, Werner Stuetzle:
Mesh Optimization. Computer Graphics Proceedings, Annual Conference Series,
Vol. 7, 19-26, 1993.

Hugues Hoppe: Progressive meshes. Proceedings of SIGGRAPH 96, 99-108, 1996.
Hugues Hoppe: View-dependent refinement of progressive meshes. Proceedings of
SIGGRAPH '97, 189-198, 1997.

Hugues Hoppe: Smooth View-Dependent Level-of-Detail Control and its Applica-
tion to Terrain Rendering. IEEE Visualization, 35-42., 1998.

Andreas Hubeli, Markus Gross: Multiresolution Methods for Non-Manifold Models.
IEEE Transaction on Visualization and Computer Graphics, 2001.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

19

Aravind Kalaiah, Amitabh Varshney: Differential Point Rendering. Rendering
Techniques 01 , S.J. Gortler and K. Myszkowski (edts.), Springer-Verlag, 139—
150, 2001

Leif Kobbelt, Swen Campagna, Hans-Peter Seidel: Mesh Reduction Revisited. Uni-
versit”at Erlangen, 1997.

Leif Kobbelt, Swen Campagna, Jens Vorsatz, Hans-Peter Seidel: Interactive Multi-
Resolution Modeling on Arbitrary Meshes. Proceedings of SIGGRAPH ’98, 1998.
Leif Kobbelt: Multiresolution techniques. To appear in: Farin, Hoschek, Kim
(Edts.), ”‘Handbook of Computer Aided Geometric Design”’, Elsevier.

P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, G. Turner: Real-time,
continuous level of detail rendering of height fields. Proceedings of SIGGRAPH
’96, 109-118, 1996.

Lars Linsen, Hartmut Prautzsch: Local Versus Global Triangulations. Proceedings
of Eurographics ’01, Short Presentations, Manchester, 257263, 2001.

Lars Linsen: Qberflichenreprasentation durch Punktwolken. Dissertation, Univer-
sitdt Karlsruhe, Verlag Shaker, Aachen, 2001.

Robert Mencl, Heinrich Miiller: Graph-Based Surface Reconstruction Using Struc-
tures in Scattered Point Sets. Proceedings of Computer Graphics International '98,
Hannover, 1998.

Robert Mencl, Heinrich Miiller: Interpolation and Approzimation of Surfaces from
Three-Dimensional Scattered Data Points. State of the Art Report for EURO-
GRAPHICS ’98, Lisbon, 1998.

Renato Pajarola: Large scale Terrain Visualization using the Restricted Quadtree
Triangulation. Technical Report, ETH Ziirich, Switzerland, 1998.

Mark Pauly, Markus Gross: Spectral Processing of Point-Sampled Geometry. Pro-
ceedings of SIGGRAPH ’01, 2001.

Hanspeter Pfister, Matthias Zwicker, Jeroen van Baar, Markus Gross: Surfels:
Surface Elements as Rendering Primitives. Proceedings of SIGGRAPH ’00, 2000.
Stephan Preuf: Von Punktwolken zu Dreiecksnetzen. M.S. thesis, Universitat
Karlsruhe, Germany, 2002.

Chris Prince: Progressive Meshes for Large Models of Arbitrary Topology. M.S. the-
sis, University of Washington, Seattle, 2000.

S. Rottger, W. Heidrich, P. Slusallek, H.-P. Seidel: Real-Time Generation of Con-
tinuous Levels of Detail for Height Fields. Proceedings of 6th International Con-
ference in Central Europe on Computer Graphics and Visualization ’98, 315-322,
1998.

Szymon Rusinkiewicz, Marc Levoy: @QSplat: A Multiresolution Point Rendering
System for Large Meshes. Proceedings of SIGGRAPH ’00, 2000.

Eric J. Stollnitz, Tony D. DeRose, David H. Salesin: Wawvelets for Computer Graph-
ics: Theory and Applications. The Morgan Kaufmann Series in Computer Graphics
and Geometric Modeling, Brian A. Barsky, Series Editor, 1996.

Julie C. Xia, Amitabh Varshney: Dynamic View-Dependent Simplification for
Polygonal Models. Proceedings of the IEEE Visualization 96, 327-334, 1996.
Matthias Zwicker, Hanspeter Pfister, Jeroen van Baar, Markus Gross: Surface
Splatting. Proceedings of SIGGRAPH ’01, 2001.

