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Abstract
Free form surfaces are commonly represented by triangular or quadrilateral meshes. Often these meshes are
obtained from unorganized point sets sampled from some object’s surface.
We show that local rather than global triangulations of point sets are equally well suited for object representations
and that the local triangulations proposed in this paper may even lead to fast triangulation routines.

1. Introduction

For many computer-aided applications in manufacturing, ge-
ography, medicine, design etc. it is necessary to reconstruct
three-dimensional objects. With todays scanning methods it
is easy to obtain large dense sets of points on a given object
surface. We will call such sets point clouds.

To obtain a continuous surface representation various
methods have been developed to generate triangular meshes
from point clouds. Given a triangular net standard tech-
niques can be used to visualize the underlying object, to
reduce the amount of data and/or reduce noise due to the
scanning process, and to modify and edit the object.

In Section 3 of this paper we show that very local triangu-
lations suffice to visualize an object given by a point cloud.
Further, in Section 4 we present ideas for a fast triangulation
routine based on our local triangulation. In Section 5 we de-
velop a smoothing operator and in Section 6 we evaluate our
method by comparing it to related work.

2. Related work

In the nineties various approaches were presented to gen-
erate triangular meshes out of point clouds. The algorithms
are based on spatial subdivision (e.g. 1� 2� 3� 5� 6� 8� 10� 14� 25), dis-
tance functions (e.g. 6� 14), warping (e.g. 1), and incremental
surface-increase (e.g. 4� 5� 10� 19). A survey is given in 20.

To obtain high accuracy and resistance against error
distortion the measuring techniques nowadays produce up
to many millions of sampling points. Thus, usually point
clouds are downsampled before a surface reconstruction al-
gorithm is applied. For the data reduction some heuristics
like grouping of points are used 9� 24� 29� 31.

Smoothing operators for triangular meshes were devel-
oped in 7� 12� 15� 28.

Already in 1992 Szeliski and Tonnesen presented oriented
particles 27. These are point clouds, where each point has an
orientation, compatible with the normal direction of the rep-
resented surface. To force oriented particles to group them-
selves into surface-like arrangements, they apply potential
energies. For rendering purposes they use axes, discs, or af-
ter triangular mesh generations wireframes and shaded tri-
angulations.

3. Visualization

In particle animations of fire, fog, water, etc. point clouds are
visualized by drawing only all the points 22� 26. However, for
a solid object this simple technique does not lead to a realis-
tic plastic impression as illustrated in Figure 4(a). Raycast-
ing gives better results, but the point cloud has to be rather
dense and for frame rates of 1-2 fps approximately one hour
of preprocessing is required 11� 21.

In our method we compute for each point p a k-
neighbourhood consisting of k pointers to points p1� � � ��pk
of the cloud close to p as described further below. The neigh-
bours pi are determined such that the k triangles ppipi�1
form a fan that approximates a “disc”, i.e. neighbourhood,
of p on the surface represented by the point cloud.

With k� 6 all k-neighbourhoods take about the same stor-
age as a triangular mesh. However, since the triangle fans do
not form one coherent mesh, they are much faster to com-
pute, see Section 6 for a comparison.

To determine a k-neighbourhood of a point p we deter-
mine the k nearest neighbours p1� � � ��pk, compute the plane
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P with the least sum of squared distances to p�p1� � � ��pk
and project all points into P. Then we sort, i.e. permute the
indices of p1� � � ��pk such that their projections q1� � � ��qk
form increasing angles ϕi � � q1qqi with the projection q
of p. In this order the points pi form a triangle fan or k-
neighbourhood of p, see Figure 1.
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Figure 1: A k-neighbourhood for k � 5.

If the point density varies sharply around p, then
the neighbourhood may not enclose p, see Figure 2(a).
Therefore if �ϕi � ϕi �ϕi�1 � 90Æ, we replace qk by the
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Figure 2: Necessity of the angle criterion for choosing the
neighbours of a point p.

�k� 1�st neighbour and if necessary by further next neigh-
bours till the angle criterion �ϕi � 90Æ is met or a certain
threshold number of replacements has been reached.

Along sharp edges the best fitting plane may be normal to
the surface, see Figure 3. Then the angle criterion could not

best fitting plane

p
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Figure 3: Best fitting plane for an edge point.

be satisfied. In such a case we flip the fitting plane around
pi�1pi by 90Æ and try again to build the neighbourhood.

If the angle criterion can still not be met, then we assume
that pi�1, p, pi lie on the boundary of the surface.

To visualize the object represented by the point cloud we

render the cloud of all triangle fans, see Figure 5(a). Al-
though the fan cloud does not form a coherent triangular
mesh it is so close to it that no artefacts can be seen in a
shaded image, see Figure 4(c) and the next section for a de-
tailed discussion.

To use Gouraud or Phong shading we associate with each
point the normal of the best fitting plane which has been
computed above. A consistent orientation of the normals can
be computed with the minimal spanning tree described in 14.
A result is shown is Figure 4(c) for k � 8.

Rendering discs or similar surface pieces instead of our
triangle fans as done in 27� 32 does not lead to a com-
parable well surface visualization, see Figure 4(b). In 23

Rusinkiewicz and Levoy develop their QSplat approach to
overcome this problem. However, for good results this ap-
proach needs a triangular mesh. Moreover for best results
they resort to antialiasing techniques which further raise the
time complexity of their method.

4. Global triangulation via fan cloud

A fan cloud consists of k � n triangles whereas a triangular
mesh consists of only 2n triangles. However, there are many
duplicates in a fan cloud. Without them a fan cloud consists
of about 2�5n triangles.

Further there are quadrilaterals covered by three or four
triangles of a fan cloud, i.e. by one or two superfluous trian-
gles. Removing these superfluous triangles reduces the num-
ber of triangles to about 2�1n in Figure 5(b). This reduced fan
cloud can be viewed as several different triangulations of the
point cloud on top of each other.

In fact it is possible to obtain a triangular net from the re-
duced fan cloud. We can simply grow a triangular net by suc-
cessively adding on triangles. The result is illustrated in Fig-
ure 5(c). It has few (0�01%) selfoverlaps since we neglected
any geometric aspects and based the construction only on
topological aspects. Since by construction there are no edges
with more than 3 triangles, the overlaps correspond to holes
that fold back onto themselves as illustrated in Figure 6 by
heavy lines.

This triangulation is fast. Its running time is given in Table
1.

5. Smoothing

For triangular nets several smoothing operators are known.
Kobbelt 15 presents a discrete Laplacian smoothing operator
that moves any point p to the centroid q of its neighbours.
This operator can also be used to smooth point clouds with
our k-neighbourhoods.

Since the Laplacian smoothing operator shrinks the ob-
ject, Taubin 28 proposes from a signal processing point of
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(a) (b) (c)

Figure 4: (a) Plotting the points of a point cloud. (b) Drawing an accumulation of pieces of the represented surface. (c)
Visualization of the fan cloud.

(a)

(b)

(c)

Figure 5: From a fan cloud to a triangular net.

view to use the operator

p :� �1�λ�p�λq

alternately with positive and negative λ’s. This causes the
object to alternately shrink and grow.

Figure 6: Overlapped folded hole.

As a side effect these smoothing operators also equalize
the shape of the triangles. This can affect texture and colour.
Therefore Guskov et al. 13 develop a smoothing operator
that takes the geometry into account and approximately pre-
serves the shape of the triangles.

Their smoothing operator gives a mesh with a minimal
sum

E �∑
e
�D2

e�
2

of squared second differences

D2
e � ∑

x��i� j�k�l�

ce�xpx �

where with the notation given in Figure 7

ce�i �
djk

Ai jkAlk j
Alk j ce� j � �

djk
Ai jkAlk j

Akil

ce�k � �
djk

Ai jkAlk j
A jli ce�l �

djk
Ai jkAlk j

Ai jk

d jk � �p j � pk�2 and Axyz denotes the signed area of the
triangle pxpypz.

The associated smoothing operator is

pi :�∑
j

ωi jp j
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Figure 7: The support of D2
e .

with

ωi j ��
∑e ce�ice� j

∑e c2
e�i

�

where the numerator is summed over all edges e, whose as-
sociated rhombus (cf. Figure 7) contains pi and p j, and the
denominator is summed over all edges e, that contribute to
the neighbourhood (triangle fan) of pi.

The support of the smoothing operator has the form of
a star and is larger than a k-neighbourhood. Therefore we
came up with the modified smoothing operator

p :� p�λ��p �

where

��p �
k

∑
i�1

�
ωi

ω0
qi�p (1)

and the values ωi are determined by

k

∑
i�1

�
�pqi

�
k

∑
i�1

ωiqi �ω0p

with

�
�p jpk

� ∑
x��i� j�k�l�

cxpx

and the coefficients

ci �
djk
dil

Alk j c j � �
djk
dil

Akil

ck � �
djk
dil

A jli cl �
djk
dil

Ai jk

Note that �� is Kobbelt’s discrete Laplace operator if all
triangles of the k-neighbourhood are congruent.

Using Taubin’s idea we alternately use a positive and a
negative λ to avoid a shrinkage of the object.

Figure 8 shows a point cloud before and after smoothing
it with our operator for k � 8.

Figure 9 illustrates the effects of the Laplacian and our
smoothing operator applied to a triangular mesh. While the
Laplacian smoothing operator changes the triangle shapes
very obviously, our smoothing does not do so.

The reason for the behaviour is that the normalized vec-
tor ��p is a very good approximation to the surface normal.
Although we found this operator by trial and error it gives a

much better approximation of the surface normal at p than
the average normal of the triangle fan at p or the normal of
the best fitting plane, as illustrated in Figure 10.

(a)

(b)

(c)

Figure 10: Surface with average normals of triangle fans
(a), normals of the best fitting planes (b), and the normalized
vectors of our smoothing operator (c).

6. Discussion

In this section we discuss the advantages and disadvantages
of local triangulations in comparison with triangular meshes.

If triangular meshes are used for surface reconstruction, a
mesh needs to be generated before operations like smoothing
can be executed. Usually large point clouds are reduced be-
fore a mesh generation 9� 24� 29� 31. In contrast to this approach
we can smooth point clouds immediately. Thus the whole
sample information is used and a reduction can be based on
the smoothed surface geometry and colour distribution.

Various methods were developed for the triangular mesh
generation. Many of them use Delaunay tetrahedrizations,
which have a time-complexity of O�n2� for n points. In 30

it is shown that the computation of the k-nearest neighbours
can be done in O�n logn� by using a preprocessing step. Thus
point clouds can be visualized in O�n logn�.

The profits in time-complexity become clearer when we
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(a) (b)

Figure 8: Error elimination by applying our smoothing operator.

(a) (b) (c)

Figure 9: The Laplace-operator applied to a triangular mesh (a) changes the triangle shapes (b), in contrast to our smoothing
operator (c).

look at the overall running time, see Table 1. These examples
show that with our method the running times are reduced
from minutes to seconds.

Newer approaches 4� 10 try to cut down on the high costs
for a mesh generation by making extra assumptions on the
sampling rate. They achieve lower running times at the ex-
pense of generality.

In our experience visualizing a triangular mesh versus a
point cloud with our neighbourhoods leads to results with
equal quality.

If measuring techniques scan the object from different
viewpoints, many merging steps like the one shown in Fig-
ure 11 have to be executed. Again for triangular mesh rep-
resentations sophisticated analyses of the object’s shape are
required to know exactly, where and how the samples can be
merged. Numerical problems may occur. For point clouds
the points of the multiple range images are simply stuck into
one single point cloud. Because of calibration errors we ap-
ply our smoothing operator to the regions, where the samples
overlap. If desired the overlapping regions can be reduced.
A result for point clouds is shown in Figure 11(c).

Furthermore, our local triangulation is also very well
suited for many other geometric operations, for example re-
duction, multiresolution modelling, refinement, and others,
see 18.
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(a) (b) (c)

Figure 11: Merging two partly overlapping samples to build one single point cloud.
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