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1 Introduction

Surface rendering or point location on a surface can easier be accomplished in
an implicit rather than parametric representation. This observation has been the
key motivation for developing piecewise algebraic splines.

In particular, Dahmen [1989] and Guo [1991] used triangular segments of quadrics
to build tangent plane continuous surfaces interpolating the vertices of a trian-
gular net with prescribed normals. Their construction is based on the implicit
Bézier representation introduced by Sederberg [1985] and employs the idea of the
Powell-Sabin split [1977] for bivariate C''-piecewise quadratics.

While Dahmen’s and Guo’s approach is completely algebraic, the objective of
this paper is to derive their quadric splines solely geometrically in projective
space. The geometric approach has several benefits. It provides a geometric
meaning for certain parameters chosen to be the same constant by Dahmen and
Guo. Furthermore, it facilitates the classification of the quadrics, avoids the
global dependencies of Dahmen’s and Guo’s transversal system, and renders the
Powell-Sabin interpolant as a special case.

2 Preliminaries

Throughout the paper small hollow letters, a, b,..., are used to denote points in
projective 3-space while capital script, A, B,..., is used to denote (the equations
of) planes and quadrics. A point of a quadric and the tangent plane at this point
are always denoted by the same letter, i.e. by p and P (or P(x) = 0). Together
they form a contact element which is briefly referred to as the contact ele-

ment .

Before we construct a quadric spline we observe that there is in general no single

quadric with three arbitrary contact elements , , . Such a quadric exists
only if there is a conic through [a], [b], [¢] (in the plane abc).

However, three arbitrary contact elements can always be interpolated by a C'l-
macro patch consisting of 6 triangular quadric segments as illustrated in Figure
1. Fewer segments do not suffice. This is obvious for three segments arranged
as in Figure 1, middle (since the three conics through any two vertices and the
vertex p common to all segments would lie on a single quadric) and can also be



shown for four segments as in Figure 1, right.

Figure 1: A macro patch (left) and two stiff configurations (right).

Remark 2.1 All quadrics with three common contact elements , , are
members of the pencil K + MXA* where U denotes the plane abe and K the unique
tangent cone through , , and . In particular, two quadrics with C'-contact

along a curve are members of such a pencil and vice versa. Hence the common
curve is a (double) conic.

Remark 2.2 A conic through , , and exists if and only if , , and

form Brianchon’s configuration as illustrated in Figure 2. This condition can
be expressed algebraically as

A(b)B(e)C(0) = B(a)C(b)A(c).

Guo [1991] derives an equivalent form from the algebraic equation of a quadric

through , , and .

Figure 2: Brianchon’s configuration.

Remark 2.3 Mapping the conic onto a circle such that the line be

meets the tangent in a in an ideal point § shows that a conic through three contact

elements , , and exists if and only if o and § are separated harmonically
by the tangents in ¢ and b, ¢f. Figure 2.



3 Biarcs

A planar cut through two quadric segments with C''-contact along a conic gives
a biarc consisting of two conics touching each other in two points p and q as
illustrated in Figure 3.

Figure 3: A planar cut.

As a consequence of Remark 2.3 the biarc is completely determined by the sepa-
rating line pg, a common contact element, say , a contact element |a|on the
first and a contact element on the second arc. This construction of a biarc
is shown in Figure 4, where the given elements are marked by hollow and the
constructed elements by solid dots.

4 Constructing the Macro Patch

The simple biarc construction is essentially all that is needed to construct a C'l-
macro patch consisting of six quadric segments Q;,..., Q¢ with one common
contact element |p | as shown in Figure 1. Following Dahmen and Guo we choose
the six planes separating the six quadric segments so as to meet in some so called

transversal line £ through .

The six quadrics to be constructed have a second contact element |g|on L. Let @,
b, and € be the intersections of £ with A, B, C as illustrated in Figure 5. It follows
from Remark 2.3 that the tangent planes P and Q divide the pairs a@, bb, and c¢
harmonically. Hence we may choose | p|arbitrarily and construct | g|or vice versa.

Lemma 4.1 Any three contact elements , , , and any point x determine

two unique quadrics Qi and Qo through , , %, and , , %, respectively,

with Cl-contact in any prescribed plane U through p and %, see Figure 3 for an
tllustration.



Figure 4: Biarc construction.

Figure 5: Constructing the second
common contact element.

Proof:
The two conics % and % define the tangent plane Q at z. The biarc

'b|meets its separating plane ¢ in p and a second point g. In both pencils

and there is each a unique quadric through g. These quadrics

carry the biarc and the conic g. Thus they have three common contact
elements, namely , , and [g] which implies C''-contact in U. O

Constructing the four remaining quadrics Qs,...,Q¢ analogously as in Lemma 4.1
results then in a C''-macro patch. Namely Q; and Qg, for example, have three
common contact elements , , and hence C'-contact in the plane apq ,

see Remark 2.1.

In the following we will always assume that the three boundary curves ab, be,
ca of a macro patch are planar biarcs.

Remark 4.2 In case p is the ideal point of the z-axis and P the ideal plane,
all 6 quadrics Qq,...,Qs are paraboloids defining quadratic polynomials over the
xy-plane. Thus, if the three boundary planes of the macro patch are chosen to be
parallel to the z-axis, the macro patch is a Powell-Sabin element [Powell & Sabin

1977]. See also Remarks 7.2 and 7.5.

5 ('-Propagation

Two macro patches with vertices a, b, ¢, and ¢ as illustrated in Figure 6 have
in general two different boundary curves ab, even if these curves lie in the same
plane. The following two properties are employed in the next section to fill this
gap smoothly:



Figure 6: Two adjacent macro patches.

Two quadrics have Cl-contact in a plane ¢ if and only if they lie in the pencil
Q+ MA?*, X € IR, where Q denotes one of these two quadrics. This C'-contact
in U is inherited by all pairs of quadrics

Q + pV? and (Q + NU*) + pV?

having Cl-contact with @ and Q 4+ A/? in any plane V since (Q+ )\Uz) + MVZ =
(Q + uV?) + \XU*. Note that for every point x in U there is exactly one such pair
of quadrics containing x (see Figure 7).

Q Q + \A?

AL

—
Q + V2 U Q + \U? + )2

Figure 7: C'-propagation

6 Connecting the Macro Patches

A smooth connection between two macro patches can be constructed using four
intermediate quadrics Ry, Ra, R1, R as illustrated in Figure 8.



Figure 8: Filling the gap between two adjacent macro patches

Following Dahmen and Guo we assume that the quadric segments Q,, Q3 and
Q,, Q, of the macro patches are separated by a common plane Z/ which implies
the coplanarity of the transversal lines £ and £. Let r and © be the two points
lying in U and on the boundary curves ab of the two macro patches, respectively.
Then the gap can be filled by the following construction:

Construction 6.1

Choose any plane V through ab separating both macro patches. The
biarc with separating plane V intersects V in a and a second

point s.

Let Ry be the quadric through s having C'-contact with Qi in the
plane arb and let Ry be the quadric through © which has C*-contact
with Ry in the separating plane V.

As explained in Section 5 there exist unique quadrics Ry and R
through b having C'-contact with Ry and Ry in U, where Ry has
also Cl-contact with Qy and Ry in the planes arb and V, respec-
tively.

7 The Smoothness of the Filling

The quadrics Ry, Ry, Ri, R establish a smooth (i.e. tangent plane continuous)
filling between the macro patches if also Ry and Q; have C''-contact. The theorem
below gives a simple criterion for this C''-contact.

Theorem 7.1 For any contact element |q|let 2, and y, denote the intersections
of the line alb with the tangent plane Q and the plane of the pencil AB through
g, respectively. Then the quadrics Ry and Qi have C'-contact if and only if the
cross ratios

cr labx,y,] = cr[abx,y,

are identical.



Remark 7.2 ]f = , no extra filling is needed. Namely, Q1 and Q, are
uniquely determined by , , , a further point q in U, and their C'-contact
in U, see Lemma 4.1. Hence Qi and Qs are also the unique quadrics through g
having C'-contact with Q1 and Q, in the plane abp as explained in Section 5.

Remark 7.3 In particular, if all macro patches are Powell Sabin elements, see

Remark 4.2, no filling is needed.

8 Proof of the Theorem

For the proof of Theorem 7.1 we revisite Lemma 4.1 and use the same notation
as in Figure 5. Let m be the unique projective map with fixed points @, @, b, and
b which maps any plane P’ through p onto the plane Q’ through g such that P’
and Q’ separate both pairs @@ and bb harmonically. Thus Lemma 4.1 can be
generalized as follows:

Lemma 8.1 There are two quadrics through , , and , , , respec-

tively, with C'-contact in any prescribed plane U through p and q if and only if
m(P) = Q. These quadrics are unique.

Furthermore, the tangents of the conics |a|p and |o|q at p and g, respec-

tively, intersect the line ab in two points z, and z,, respectively. If P contains z,,

then there exists a single quadric through , , , and g. Hence @ contains

z,. Figure 2 shows that the points @, b, y,, and z, are in harmonic position, and
similarly g, b, y,, and z,.

Figure 9: Cross Ratios

Thus, 7 maps @, b, %,, y, onto @, b, %, y,, respectively, which implies
cr [abx,y,] = cr[obx,y,].

7



So, if Ry, R1, Ra, Ry define a smooth filling, Lemma 8.1 implies
cr [abx,y,] = o ebxy,] = c[abxy,] = c [abxy,].

On the other hand, if the cross ratios are equal, the tangent planes of R, and Q,
at © contain both the same point %7 and contact the biarc . Hence they
are identical.

Now substituting R and ¢ for P and p in Remark 7.2 gives for 7 = 1,2 that R,
has C'-contact with Q; in the plane arb.

9 Some Remarks

Remark 9.1 The map 7 can be expressed in homogeneous coordinates as:

P — Q = A(g) B(p) P(a) - (bApAaQ)
+ A(p) B(g) P(b) - (eApAg)
+ A(p) B(p) P(a) - (eAbAg),

where N\ denotes the alternating product. This follows from Remark 2.2 and the
fact Q(g) = 0.

Remark 9.2 By straightforward algebraic manipulations one obtains for the cross
ratio of Theorem 7.1:
_ B(o) Alp) P(b)

A(b) B(p) P(a)

In particular, if P(x) = 0 is in Hessian normal form, P(a) represents the Eu-

crlabx,y,] =

clidean distance between a and P. For the other planes holds the analogue.

Remark 9.3 The macro patch has two contact elements cmd on the transver-
sal line L, see section 4. In the proof of Theorem 7.1, p can denote either one of
them. So the cross ratios do not alter if p and g are interchanged.

Remark 9.4 The product of the three cross ratios on the edges of the triangle

does not depend on . Let za, and y,, be the intersections of the line
ab with P and the plane in the pencil AB through p, respectively, and define %p.,

Yoer Zeas and y., analogously. Then we get

_A(b) B(c) C(a)
B(o) C(b) A(c)

Consequently, any three points z.p, zpe 2.q on the edges ab, be, ca are collinear iof

v = crlobrayqs] - er[obwmey] - er [obxaye] =

and only if

cr [abzapyy) - cr [obzpeyy] - er [ebzwyn] = 7-

This generalizes Menelaos™ theorem. In particular, v = —1 holds if and only if
Brianchon’s condition holds, see Remark 2.2.



10 Feasible Choice of the Tangent Planes

Consider a set of triangles o, 0, ax, (ijk) =1 € I C {1,...,n}? forming a tri-
angulation of given data points @;, 1 = 1,...,n. For each macro patch o, o, a,
(2gk) € I, let pg be the common vertex of its six quadric segments.

Now we will show how one can obtain a feasible set of tangent planes Ps in the
interior vertices ps of the macro patches, i.e. tangent planes such that the cross-
ratio condition of Theorem 7.1 is satisfied for all edges of the triangulation.

Let «; be arbitrary weights associated with the vertices @; such that each triangle
@; 00, § = (igk) € I, has at least one vertex with non-zero weight. Then the
planes P; whose equations solve the linear systems

{7’5(01) = o Ai(pg), [=1,7,k
Pi(ps) = 0

form a feasible set. Namely the cross ratio of Theorem 7.1 associated with any
edge @;0; as obtained from Remark 9.2 is given by

_aj Aj(a)
a; Ai(a;)

cr lo; o5 xy] =

and depends only on and .

Remark 10.1 FEvery feasible set of tangent planes P; can be obtained in this
way.

Remark 10.2 If all weights «; are 1 and if the equations of all tangent planes
are in Hessian normal form one obtains the quadric splines of Dahmen [1989].

11 Special transversal systems

For each triangle a,a0;ax, § = (ijk) € I, a transversal line L3 is needed such that
the pairs of transversal lines associated with adjacent triangles are coplanar, see
Section 6. Dahmen [1989] lists a few systems of such lines. Another transversal
system is formed by the lines

Lijp = {#|laiAi(x) = a;A;(x) = arAr(n)},

where the a’s are arbitrary constants. Note that L;j; contains the intersection
.A,' M ./4]‘ M .Ak

Hence a feasible set of tangent planes Ps has the property that any pair Pijx Pij
assoclated with two adjacent triangles intersects the line g;0; in the same point.
Thus a special feasible set is obtained if all P, ;. are parallel to their corresponding
triangles o; @;a.



Remark 11.1 Moreover if all weighted plane equations o; A;(x) = 0 are in Hes-
stan normal form, L, consists of all points with equal distance to A;, A;, and

Ap.

12 Avoiding Global Transversals

The choice of an adequate transversal system is far from being trivial. Even with
the local constructions of Section 11 it is not always possible to guarantee that
the transversals intersect the corresponding triangles in their interior and that
the planes spanned by transversals of adjacent triangles meet the common edge.
One way to overcome this difficulty is to replace a given triangle o;0;0; by three
non coplanar subtriangles o;a;bs, 0;bsox, bso,ar, meeting in one interior point by
and to associate a transversal plane Tj; to each edge @;a; of the original net. The
planes corresponding to the edges of one triangle @; 0,0 intersect in points z, .
Now the coplanarity condition is satisfied if the transversal line of any subtriangle
0;0;b; goes through zy,; and lies in 7.

Another construction resulting in half as many quadric segments, shape investi-
gations and further results will be given in a longer version of this paper.
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