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1 Geometric fundamentals

1.1 Affine spaces — 1.2 Affine combinations — 1.3 Affine maps — 1.4 Para-

metric curves and surfaces — 1.5 Problems

The world can be seen as a space of points while vectors describe the direc-
tions and lengths of line segments between pairs of points. The interpretation
of the world as a point space, and not as a vector space, has the advantage
that any point can serve as the origin. This fact is also reflected by the
symmetry of barycentric coordinates.

Since this book relies heavily on the concept of point or affine spaces, this
chapter provides a brief recapitulation of their fundamental properties that
are used throughout the book.

1.1 Affine spaces

An affine space A is a point space with an underlying vector space V. Here
we consider only finite-dimensional spaces over IR, which implies that points
as well as vectors can be represented by the elements of some IRn. Thus, any
x ∈ IRn represents a point or a vector, depending on the context. Moreover,
we only work with such a coordinate representation and, therefore, simply
regard A and V as some IRn.

Given two points p and q, the vector pointing from p to q is obtained as
their difference,

v = q− p ,

as illustrated in Figure 1.1. Note that a vector can be added to a point, but
the sum of two points is undefined.

One can distinguish between points and vectors by extended coordinates
with

x =
[
x
e

]
representing a

{
point
vector if e =

{
1
0 .
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1.3. Affine maps 5

Figure 1.2: Linear interpolation and ratio.

any m points of A. Then, the weighted sum

a =
∑

aiαi represents a
{

point
vector if

∑
αi =

{
1
0 .

If the weights sum to one, then a =
∑

aiαi is called an affine combina-
tion. If, in addition, the weights are non-negative, then a is called a convex
combination. It lies in the convex hull of the points ai, see Problem 4.

1.3 Affine maps

Let A and B be affine spaces, U and V be the underlying vector spaces
and m and n be the corresponding dimensions, respectively. Then, a map
Φ : A → B is called affine if it can be represented by an n×m matrix A and
a point a of B such that

y = Φ(x) = a + Ax ,

where a represents the image of the origin of A.

The linear map ϕ : U → V given by

v = ϕ(u) = Au

is called the underlying linear map of Φ. Using extended coordinates,
both maps have the same matrix representation, which is given by

[
y
1

]
=

[
A a
ot 1

] [
x
1

]
,

[
v
0

]
=

[
A a
ot 1

] [
u
0

]
,

and more concisely written as

y = Ax , v = Au .

The following two properties are immediate consequences of the matrix rep-
resentation.
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6 1. Geometric fundamentals

An affine map Φ commutes with affine combinations, i.e.,

Φ(
∑

aiαi) =
∑

Φ(ai)αi .

And

an affine map is completely determined by a frame of dimA + 1
independent points p0 . . . pm and its image q0 . . . qm.

The first property even characterizes affine maps, see Problem 5. The second
property is due to the fact that the matrix A can be written as

A q0 . . . qm p0 . . . pm=

m + 1

n + 1

-1

.

1.4 Parametric curves and surfaces

An element x of IRd whose coordinates depend on a parameter t traces out a
parametric curve,

x(t) =




x1(t)
...

xd(t)


 .

Usually, we visualize x(t) as a point. In particular, if the coordinate func-
tions xi(t) are polynomials of degree n or less than n, then x(t) is called a
polynomial curve of degree n in t.

The graph of a function x(t) is a special parametric curve in IR2, which is
given by

x(t) =
[

t
x(t)

]
.

Such a planar curve is often referred to as functional curve.
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2.5. Singular parametrization 17

2.5 Singular parametrization

Consider a polynomial curve

b(t) =
n∑

i=0

biB
n
i (t)

and its derivative

ḃ(t) = n

n−1∑

i=0

4biB
n−1
i (t) ,

where the dot indicates differentiation with respect to the parameter t.

If4b0 = o, then ḃ(t) is zero at t = 0. However, with the singular reparametri-
zation t =

√
s, one gets

d

ds
b(t(0)) = n · 4b1 .

Thus, if 4b0 = o and 4b1 6= o, then the curve b(t) has a tangent at t = 0
that is directed towards b2, as illustrated in Figure 2.9.

Figure 2.9: Singular parametrization.

Remark 6: If 4b0 = 4b1 = o and 4b2 6= o, then the tangent of b(t) at
t = 0 is directed towards b3, etc.

2.6 A tetrahedral algorithm

Computing differences and the affine combinations of de Casteljau’s algo-
rithm can be combined. Namely, the rth derivative of a curve

b(u) =
∑

b0
i B

n
i (t) , t =

u− a

b− a
,

at any u can be computed with de Casteljau’s algorithm applied to multiples
of the differences ∆kbi. Since the computation of affine combinations of
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2.8. Conversion to Bézier representation 21

Remark 8: If a2 = · · · = an = o and a1 6= o, then b(t) is a linear polynomial
represented over [0, 1] by the Bézier points

bj = a0 + ja1 ,

as illustrated in Figure 2.12.

Figure 2.12: Equidistant Bézier points on a line.

Remark 9: Conversely, if the n + 1 Bézier points bi lie equidistantly on a
line, then b(t) is a linear polynomial, which can be written as

b(t) = (1− t)b0 + tbn .

This property is referred to as the linear precision of the Bézier represen-
tation.

Remark 10: As a consequence of Remark 8, the functional curve

b(t) =
[

t
b(t)

]
, b(t) =

∑
biB

n
i (t) ,

has the Bézier points [i/n bi]t, as illustrated in Figure 2.13. The coefficients
bi are referred to as the Bézier ordinates of b(t), and i/n as the Bézier
abscissae.

Figure 2.13: Bézier representation of a functional curve.
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28 3. Bézier techniques

Figure 3.1: Main theorem, illustration.

In de Casteljau’s array,

b0
0

b0
1 b1

0
...

. . .

b0
n b1

n−1 · · · bn
0 = b(c)

used to compute a point b(c), the Bézier points

bi
0 = b[a n−i. . . a c i. . . c] and bn−i

i = b[c n−i. . . c b i. . . b]

of the curve segments over [a, c] and [c, b] are found in the upper diagonal
and bottom row, respectively.

The computation of the Bézier points over the two intervals [a, c] and [c, b] is
called subdivision. The corresponding construction is shown in Figure 3.2.
Again, the points

bk
i = b[a n−i−k. . . a c k. . . c b i. . . b]

are labelled by their arguments. Note that the figure is still correct if we
interchange b and c.

On subdividing b(u) repeatedly, one can obtain the Bézier polygons of b(u)
over any number of abutting intervals [a0, a1], [a1, a2], . . . , [ak−1, ak].

Together, these polygons form the composite Bézier polygon of b over
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3.5. Curve generation by subdivision 31

Figure 3.3: Subdividing a Bézier polygon three-times.

ment b0bn when this criterion is satisfied. A bound of its deviation from the
curve is given by the following theorem:

Let l(t) = b0(1− t) +bnt be the linear interpolant of b(t). Then,

sup
0≤t≤1

‖b(t)− l(t)‖ ≤ 1
8

sup
0≤t≤1

‖b̈(t)‖

≤ 1
8
n(n− 1) max

i=0,...,n−2
‖∆2bi‖ ,

where ‖ · ‖ denotes the supremum, sum, or Euclidean norm.

For a proof, we refer to [Boor ’78, p. 39] and [Filip et al. ’86].

Remark 4: If b(u) has the Bézier points bi over [a, b] and the Bézier points
ci over some subinterval [c, c+h], then the differences ‖∆2ci‖ are bounded by
(h/(b− a))2 max ‖∆2bi‖, see Problem 3. Hence, the approximation order of
a linear interpolant is quadratic. Moreover, the approximation order is only
quadratic, in general. Thus, due to Remark 3, the composite Bézier polygon
over [0, 1

2m , . . . , 1] is, asymptotically, as good an approximation as the secant
polygon with vertices

b(
i

(n2m)
), i = 0, 1, . . . , n2m .

Remark 5: Essentially, the above plotting routine only evaluates convex
combinations of the form (a+b)/2. Thus, one can accelerate the procedure if
the divisions by 2 are realized by bit shifts. Then there are roughly (n+1)/2
vector additions and 1 division per vertex of the polygon in this plotting
routine.
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44 4. Interpolation and approximation

Figure 4.1: Interpolating curve

For a proof, write the interpolation conditions in matrix notation,



C1(u1) . . . Cn(u1)
...

...
C1(un) . . . Cn(un)







xt
1
...

xt
n


 =




pt
1
...

pt
n


 ,

or more concisely,
CX = P ,

which represents d simultaneous linear systems for the d columns of X. The
existence of the solution follows from the linear independence of C1, . . . , Cn

over u1, . . . , un. 3

Remark 1: If the Ci are linearly independent polynomials of degree
n − 1, then the matrix C is invertible for any n distinct values u1, . . . , un.
Namely, the homogeneous system Cx = o (for a single column x) has only
the trivial solution x = o since the zero polynomial is the only polynomial of
degree n− 1 with n roots.

Remark 2: Two points can be interpolated by a line, three points by a
parabola, four points by a cubic, and so on.

4.2 Lagrange form

A fundamental and simple method to obtain a polynomial interpolant is due
to Lagrange. Given n + 1 points pi with corresponding parameter values
ui, i = 0, . . . , n, the interpolating polynomial curve of degree n is

p(u) =
n∑

i=0

piL
n
i (u) ,

where the Lagrange polynomials Ln
i (u), i = 0, . . . , n, are defined by the

interpolation conditions

Ln
i (uk) =

{
1
0 if k = i

k 6= i
.
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54 4. Interpolation and approximation

Proof: Let x,y be a solution of (2). Further, let x + h be any other point
satisfying the constraints

D[x + h] = q .

This implies Dh = o. Further, let

r = C[x + h]− p

= r + Ch .

Then it follows that

rtr = rtr + 2rtCh + htCtCh .

The last term is non-negative, and the second term is zero since, under as-
sumption (2),

htCtr = htCt[Cx− p] = −htDty = 0 .

Hence, rtr is minimal. 3

Remark 11: If there are no constraints, i.e., D = O and q = o, then the
linear system (2) reduces to the so-called Gaussian normal equations

CtCx = Ctp .

Remark 12: If C is the identity matrix and if Dx = q is an underdetermined
system, then (2) consists of the correlate equations

x = p−Dty

and the normal equations

Dp−DDty = q ,

which one obtains by substituting the correlate equations into the constraints
Dx = q.

Remark 13: Let W be an m × m diagonal weight matrix. Then, as a
consequence of the theorem above, the weighted residual

Wr = WCx−Wp

becomes minimal under the condition Dx = q for the solution x,y of the
weighted equation
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60 5. B-spline representation

Figure 5.1: Spline functions of degree 1, 2 and 3.

5.2 B-splines

As with the Bézier representation of polynomial curves, it is desirable to write
a spline s(u) as an affine combination of some control points ci, namely

s(u) =
∑

ciN
n
i (u) ,

where the Nn
i (u) are basis spline functions with minimal support and certain

continuity properties. Schoenberg introduced the name B-splines for these
functions [Schoenberg ’67]. Their Bézier polygons can be constructed by
Stärk’s theorem.

Figure 5.3 shows a piecewise cubic C2 B-spline. Stärk’s theorem is only
needed for the Bézier ordinates, while the abscissae are given by Remark 8
in 2.8.

For higher degree this construction, albeit possible, becomes much less obvi-
ous and more complicated, see [?]. Therefore, we use a recurrence relation,
which was found independently by de Boor and Mansfield [Boor ’72] in 1970
and Cox [Cox ’72] in 1971. We define B-splines from that relation and derive
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68 5. B-spline representation

5.7 B-spline properties

We summarize the basic properties of B-splines.

• The B-splines of degree n with a given knot sequence that do not vanish
over some knot interval are linearly independent over this interval.

• A dimension count shows that the B-splines Nn
0 , . . . , Nn

m with the knots
a0, . . . , am+n+1 form a basis for all splines of degree n with support
[a0, am+n+1] and the same knots.

• Similarly, the B-splines Nn
0 , . . . , Nn

m over the knots a0, . . . , am+n+1 re-
stricted to the interval [an, am+1) form a basis for all splines of degree
n restricted to the same interval.

• The B-splines of degree n form a partition of unity, i.e.,

m∑

i=0

Nn
i (u) = 1, for u ∈ [an, am+1) .

• A spline s[an, am+1] of degree n with n-fold end knots,

(a0 =)a1 = . . . = an and am+1 = . . . = am+n(= am+n+1)

has the same end points and end tangents as its control polygon.

• The end knots a0 and am+n+1 have no influence on Nn
0 and Nn

m

over the interval [an, am+1].

• The B-splines are positive over the interior of their support,

Nn
i (u) > 0 for u ∈ (ai, ai+n+1) .

• The B-splines have compact support,

suppNn
i = [ai, ai+n+1] .

• The B-splines satisfy the de Boor, Mansfield, Cox recursion for-
mula

Nn
i (u) = αn−1

i Nn−1
i (u) + (1− αn−1

i+1 )Nn−1
i+1 (u) ,

where αn−1
i = (u− ai)/(ai+n − ai) represents the local parameter over

the support of Nn−1
i .

• The derivative of a single B-spline is given by

d

du
Nn

i (u) =
n

ai+n − ai
Nn−1

i (u)− n

ai+n+1 − ai+1
Nn−1

i+1 (u) .
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70 5. B-spline representation

ure 5.8 shows the example s(u) = N3
2 (u). Other examples are shown in

Figure 5.1.

Figure 5.8: Control points of the cubic B-spline N3
2 (u).

5.9 The complete de Boor algorithm

The Taylor expansion of a polynomial spline segment

sn(u) =
n∑

i=0

ciN
n
i (u) , u ∈ [an, an+1) ,

can be computed at any u ∈ IR following the ideas presented in 2.6 for Bézier
curves.

Let sn[u1 . . . un] be the polar form of sn and consider the points and vectors

cr,i,k = sn[ε r. . . ε ai+1 . . . ai+n−r−k u k. . . u],

where ε denotes the direction 1− 0, for i = r + k, . . . , n. It follows that

dr

dur
sn(u) =

n!
(n− r)!

cr,n,n−r ,

and the Taylor expansion is given by

sn(u + h) =
n∑

r=0

cr,n,n−r

(
n

r

)
hr .

The points and vectors crik can again be arranged conveniently in a tetrahe-
dral array, see Figure 5.9, where n = 2 and ε4 stands for sn[ε a4], etc.

This array, first considered by Sablonniere in 1978 [Sablonniere ’78], is com-
posed of

(
n+2

3

)
subtetrahedra and contains the given control points ci = c0,i,0
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72 5. B-spline representation

versa, it suffices to compute, for example, only the left and top faces of the
tetrahedral array, see [Lee ’82, Boehm ’84b].

Remark 9: If one first computes the rear face and then the bottom (or top)
face of the tetrahedral array, one needs to solve formula (2) above (or (3)) for
cr+1,i,k (or cr,i−1,k). This is impossible if u = ai+n−r−k (or u = ai). Hence,
the derivatives of the polynomial sn cannot be computed in this fashion for
u = an+1, . . . , a2n (or u = a0, . . . , an−1).

5.10 Conversions between
Bézier and B-spline representations

There is also a tetrahedral algorithm to convert a B-spline representation
into a Bézier representation and vice versa [Boehm ’77, Sablonniere ’78]. It
can be derived similarly as the algorithm in 5.9. Let the notations be as in
5.9 and let

qrik = sn[a r. . . a ai+1 . . . ai+n−r−k b k. . . b]

for i = r + k, . . . , n. Thus, the control points of the spline are given by

ci = q0i0 ,

and the Bézier points of the polynomial sn over [a, b] are given by

bj = qn−j,n,j .

Again, the points qrik are conveniently arranged in a tetrahedral array, as
illustrated below in Figure 5.10 for n = 2, where a3, ab, etc. stand for
q120, q101, etc.

The left face is computed according to the rule

qr+1,i,k = (1− α)qr,i−1,k + αqr,i,k , α =
a− ai

ai+n−r−k − ai
,

and the bottom face according to the rule

qr,i,k+1 = (1− γ)qr+1,i,k + γ qr,i,k , γ =
b− a

ai+n−r−k − a
.

Conversely, one can compute the B-spline control points from the Bézier
points. First, one solves the two formulae above for qr,i−1,k and qrik. Second,
one applies the formulae to compute the bottom and then the left face.
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80 6. B-spline techniques

algorithm [Cohen et al. ’80]. Note that the affine combinations of the Oslo-
algorithm are, in general, not convex. Further improvements are necessary
to avoid non-convex combinations.

Figure 6.3: Choosing ak for the construction of ĉj .

6.3 Convergence under knot insertion

In this section, we generalize the ideas used in 3.3. Consider the spline s(u) =∑
i ciN

n
i (u) with some knot sequence (ai). On inserting more and more knots

such that the knot sequence becomes dense eventually, the sequence of the
corresponding control polygons converges to the spline s with the rate of
convergence being quadratic in the maximum knot distance.

More precisely, let [a, b] be some interval, let h = max{∆ai|[ai, ai+1] ⊂ [a, b]},
and let γi = (ai+1 + · · · + ai+n)/n be the Greville abscissae.

Then one has
max ‖s(γi)− ci‖ = O(h2) ,

where the maximum is taken over all i such that [ai+1, ai+n] ⊂
[a, b].

For the proof, which is due to [Schaback ’93], consider a control point ci =
sr[ai+1 . . . ai+n], where sr is the symmetric polynomial of s restricted to the
knot interval [ar, ar+1) containing γi. Since

∂

∂u1
sr[u . . . u] = · · · =

∂

∂un
sr[u . . . u] ,

the Taylor expansion of sr around [γi . . . γi] is of the form

ci = sr[γi . . . γi] +
i+n∑

j=i+1

(aj − γi)
∂

∂u1
sr[γi . . . γi] + O(h2)

= s(γi) + O(h2) ,

which proves the assertion. 3
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6.4. A degree elevation algorithm 81

6.4 A degree elevation algorithm

Due to the basis properties of B-splines, we can write a spline

s(u) =
∑

i

ciN
n
i (u)

with some knot sequence (ai) also as a linear combination of B-splines of
degree n+ 1,

s(u) =
∑

j

djN̂
n+1
j (u) ,

with the knot sequence (âj) obtained from (ai) by raising the multiplicity of
each knot ai by one, as illustrated in Figure 6.4.

Figure 6.4: Knot sequences for degree elevation.

The main theorem from 5.5 and formula (2) from Section 3.11 tell us that

dj = sr[âj+1 . . . âj+n+1]

=
1

n+ 1

n+1∑

k=1

sr[âj+1 . . . â
∗
k . . . âj+n+1] ,

where sr[u1 . . . un] and sr[u1 . . . un+1], respectively, denote the n- and (n+1)-
variate polar forms of a polynomial segment of the spline s(u) that depends
on dj . Each point

sr[âj+1 . . . â
∗
k . . . âj+n]

can be computed by the generalized de Boor algorithm given in Remark 5
from Section 5.5, where one needs to insert at most ⌊(n − 1)/2⌋ knots. For
a uniform cubic spline with two segments, this algorithm is first described in
[Ramshaw ’87, pp. 109f] and in [?] for five segments.

Remark 4: The number of operations for the algorithm above is of order
O(n2) per new control point ĉi. It is possible to organize the computations
more efficiently such that only O(n) operations are needed, see
[Prautzsch et al. ’91, ?, ?].

Remark 5: Different O(n2) algorithms are derived in [Prautzsch ’84a, Cohen
et al. ’85, Piegel & Tiller ’94].
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84 6. B-spline techniques

the fact that
∑m

i1=1 . . .
∑m

ik=1(ai1 − γ0) . . . (aik
− γ0) = 0, we obtain

‖c0 − s(γ0)‖ ≤
n∑

k=2

hk

k!
mk − (m . . . (m− k + 1))

m . . . (m− k + 1)
sup ‖s(k)(u)‖ ,

which proves the claim above. 3

6.7 Interpolation

Splines are often used to solve interpolation problems. Of particular interest
is the uniqueness of a spline interpolant. Let Nn

0 , . . . , Nn
m be the B-splines of

degree n with the knots a0, . . . , am+n+1 and let p0, . . . ,pm be given points
with associated interpolation abscissae u0 < . . . < um. We wish to find a
spline s =

∑m
i=0 ciN

n
i solving the interpolation problem

s(uj) =
m∑

i=0

ciN
n
i (uj) = pj .

This means solving the following linear system

(2)




Nn
0 (u0) · · · Nn

m(u0)
...

...
Nn

0 (um) · · · Nn
m(um)






ct
0
...

ct
m


 =



pt

0
...

pt
m


 ,

which we abbreviate by NC = P . Note that this linear system consists of
several systems, one for each column of C. The matrix N is called collocation
matrix.

The Schoenberg-Whitney theorem from 1953 establishes when the in-
terpolation problem has a unique solution [Schoenberg et al. ’53].

The matrix N is invertible if and only if N has a positive diagonal,
which means that Nn

i (ui) 6= 0 for all i.

Note that if the Nn
i are continuous, then the condition Nn

i (ui) 6= 0 is equiv-
alent to the requirement ui ∈ (ai, ai+n+1).

For a proof of the theorem, we follow [Powell ’81]. Let Nn
i (ui) = 0 for some i

and assume ai+n+1 ≤ ui. Then, it follows that

Nn
0 (uj) = · · · = Nn

i (uj) = 0 for all j ≥ i ,

i.e.,
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6.7. Interpolation 85

N =

@
@

@
@

@@

@
@

@
@

@@
i

i

.0 · · · 0

...
...

0 · · · 0

Hence, standard linear algebra shows that N is singular. Similarly, N is also
singular if ui ≤ ai.

For the converse, let N be singular and c be a non-trivial column solving the
(single) homogenous system

Nc = o .

For the moment, we assume that no n + 1 consecutive coordinates of c are
zero. Then, the variation diminishing property, see Problem 4, implies that
the spline

m∑

i=0

ciN
n
i

has at most m zeroes in (a0, am+n+1) if a0 < an−1 or [a0, am+n+1) if a0 =
· · · = an−1. Thus, at least one ui lies outside the support of the corresponding
B-spline Nn

i . If
cr = · · · = cr+n = 0 ,

then one can consider the splines

r−1∑

i=0

ciN
n
i and

m∑

i=r+n+1

ciN
n
i

instead, which are zero at u0, . . . , ur−1 and ur+n+1, . . . , um, respectively. 3

Remark 6: A solution of the system NC = P above is not necessarily
affinely invariant. This is only guaranteed if N is regular and if the rows sum
to one, i.e., if

Ne = e , where e = [1 . . . 1]t .

Namely, the row condition Ne = e implies e = N−1e, which means that the
ci given by C = N−1P are affine combinations of the pi. The row condition
is satisfied if an ≤ ui < am+1 as illustrated in Figure 6.6.

Remark 7: The matrix N is totally positive, see [Karlin ’68, Boor ’76b].
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7 Smooth curves

7.1 Contact of order r — 7.2 Arc length parametrization — 7.3 Gamma splines

— 7.4 Gamma B-splines — 7.5 Nu-splines — 7.6 The Frenet frame — 7.7 Frenet

frame continuity — 7.8 Osculants and symmetric polynomials — 7.9 Geometric

meaning of the main theorem — 7.10 Splines with arbitrary connection matrices

— 7.11 Knot insertion — 7.12 Basis splines — 7.13 Problems

There are several ways to define smoothness. Stärk’s simple Cr condition
establishes a very simple construction of a smooth curve continuation. More
generally, a curve is said to be GCr if it has an r times continuously differen-
tiable parametrization. An even more general smoothness concept is based
on the continuity of higher order geometric invariants. Piecewise polynomial
curves with this general smoothness can be nicely studied using a geometric
interpretation of symmetric polynomials.

7.1 Contact of order r

Two curves p = p(s) and q = q(t), which are r times differentiable at
s = t = 0, are said to have contact of order r or to have a general Cr joint
at 0, short a GCr joint, if q̇(0) 6= o and there exists a reparametrization s(t)
with s(0) = 0 such that p(s(t)) and q(t) have identical derivatives at 0 up to
order r. As before, we denote derivatives with respect to s and t by primes
or dots, respectively.

Because of the chain and product rules, contact of order r at s = t = 0 means
that

p = q
p′ ṡ = q̇
p′ s̈ + p′′ṡ2 = q̈
p′ ˙̈s + 3p′′ṡs̈ + p′′′ṡ3 = ˙̈q .

...
...
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7.10. Splines with arbitrary connection matrices 103

Remark 18: Because of Remark 16, there are at most m, possibly coalesc-
ing, osculating flats Pn−1

a1
, . . . ,Pn−1

am
whose intersection contains any given

subspace of dimension n−m.

Remark 19: Moreover, it can be shown that the intersection of any osculat-
ing flat Pn−r

u with an m-dimensional subspace is of dimension m− r, except
for at most finitely many n, see [Prautzsch ’02].

Remark 20: The geometric approach to B-splines discussed above can be
used in a more general form also for Tchebycheffian splines,
see [Pottmann ’93, Mazure et al. ’96].

Remark 21: The Bézier points bi of a cubic curve p(u) spanning IR3 are
given by the 3rd osculants

b0 = p000 = P0
0 ,

b1 = p001 = P1
0 ∩ P2

1 ,
b2 = p011 = P2

0 ∩ P1
1 and

b3 = p111 = P0
1 ,

see Figure 7.9 for an illustration.

Figure 7.9: Osculating flats.

7.10 Splines
with arbitrary connection matrices

Let ai be simple knots such that ai < ai+1. Further, let s(u) be a continuous
curve that is polynomial of degree n over each knot interval [ai, ai+1] and
whose left- and right-hand side derivatives up to order n− 1 at the knots are
related by arbitrary non-singular connection matrices. Thus, the curve s has
a well-defined (n− 1)th osculating flat at each knot ai, denoted by Si or Sai ,
but it need not be Frenet frame continuous!

Further, we assume that the polynomial segments of s span n-dimensional
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8.2. Uniform subdivision 111

Figure 8.2: Scaled uniform B-spline.

Constructing the finer representation

sn(u) =
∑

bn
i Mn

i (u)

is rather simple. For n = 0, one has

sn(u) =
∑

ciN
0
i (u)

=
∑

ci(M0
2i(u) + M0

2i+1(u))

and, therefore,

b0
2i = b0

2i+1 = ci .

For n = j + 1 > 0, the recursion formula for uniform B-splines implies that

sn(u) =
∑

ciN
j+1
i (u)

=
∫

IR

∑
ciN

j
i (u− t)N0(t)dt

=
∫

IR

∑
bj

iM
j
i (u− t)[M0

0 (t) + M0
1 (t)]dt

=
1
2

∑
bj

i [M
j+1
i (u) + M j+1

i+1 (u)]

=
∑ 1

2
(bj

i−1 + bj
i )M

j+1
i (u)

and, therefore,

bj+1
i =

1
2
(bj

i−1 + bj
i ) .

This recursive computation of the bn
i is the algorithm of Lane and Riesen-

feld [Lane et al. ’80].

Given a control polygon, first double all control points and then
construct the polygons connecting the midpoints n times repeat-
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112 8. Uniform subdivision

edly.

Figure 8.3 shows the corresponding construction for n = 3. Solid dots mark
given points and their doubles, empty circles midpoints and small empty
circles points constructed in the preceding step. The first m steps of this
algorithm are the same for all uniform splines of degree n, where m > n.

Remark 1: The construction for n = 2 bears Chaikin’s name [Chaikin ’74]
but has already been investigated by de Rham [Rham ’47].

Remark 2: One has

sn+1(u) =

∫ u

u−1

sn(t)dt = sn ∗ N0 = s0 ∗ Nn .

Figure 8.3: Uniform subdivision.

8.3 Repeated subdivision

The uniform subdivision algorithm can be described in matrix notation. Let

C = [ . . . c−1 c0 c1 . . . ]

and
Bn = [ . . . bn

−1 bn
0 bn

1 . . . ]
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114 8. Uniform subdivision

8.4 The subdivision matrix

The subdivision matrix S1 = D ·M for piecewise linear splines can be read
off directly from Figure 8.3,

S1 =
1

2




· · ·
1 2 1

1 2 1
· · ·


 .

Similarly, the subdivision matrix S2 for piecewise quadratic splines (Chaikin’s
algorithm) is obtained as

S2 =
1

4




· · · ·
1 3 3 1

1 3 3 1
· · · ·


 .

In general, the matrix Sn is of the form

Sn =




. . .
a0 a1 . . . an+1

a0 a1 . . . an+1

. . .


 ,

where ai represents the scaled binomial coefficient

ai =
1

2n

(
n+ 1

i

)
.

Another derivation of Sn is given in Remark 5 of 8.8.

Multiplying a control polygon C by the subdivision matrix Sn leads to the
so-called refinement equations

bn
2i =

∑

j

cja2i−2j and bn
2i+1 =

∑

j

cja2i+1−2j ,

which can be combined into one equation for the new control points,

bn
i =

∑

j

cjai−2j .
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116 8. Uniform subdivision

This sequence is said to converge uniformly to a continuous curve c(u) if

sup
i
‖ ck

i − c(2−ki) ‖ −→
k→∞

0 .

Uniform convergence of the polygons Ck to c(u), implies that the piecewise
linear splines

ck(u) =
∑

i

ck
i N1

i (u)

also converge uniformly to c(u) over each compact interval since c(u) is uni-
formly continuous over compact intervals.

Further, an important necessary and sufficient criterion for uniform conver-
gence is the following [Dyn et al. ’91][Micchelli et al. ’87].

The polygons Ck converge uniformly to a uniformly continuous
curve c(u) if and only if the difference polygons ∇Ck converge
uniformly to zero.

A proof is given in 15.3, see also Problems 3 and 4.

8.7 Convergence theorems

Let Ck = [ . . . ck
i . . . ], k = 0, 1, . . . , be arbitrary polygons, not necessarily

obtained by subdivision, and assume that the second divided difference poly-
gons 2k∇2Ck converge uniformly to zero. Due to 8.6, this means that the
first divided difference polygons 2k∇Ck converge uniformly to a uniformly
continuous curve, say d(u). Therefore, the first difference polygons ∇Ck

converge uniformly to zero and the polygons Ck to a uniformly continuous
curve c.

This fact implies that the piecewise constant splines

dk(u) =
∑

2k∇ck
i N0

i (2ku)

and the piecewise linear splines

ck(u) =
∑

ck
i N1

i (2ku)

converge uniformly to d(u) and c(u), respectively. Since

ck(u) = ck
−1 +

∫ u

0

dk(t) dt ,

and since integration commutes with the limit of a uniformly converging

prau
Hervorheben

prau
Hervorheben

prau
Hervorheben



118 8. Uniform subdivision

differences ∇bi by zi and summing over all i results in the Laurent polynomial

∇b(z) =
∑

i

∇biz
i = b(z)(1 − z) .

Substituting the above equation for b(z) gives

∇b(z) = c(z2)α(z)(1 − z)

= ∇c(z2)α(z)
1 − z

1 − z2

= ∇c(z2)
α(z)

1 + z
.

The assumption
∑
α2i =

∑
α2i+1 = 1 made in 8.5 is equivalent to

α(−1) = 0 and α(1) = 2 .

Therefore, (1 + z) is a factor of α(z), which implies that

β(z) =
α(z)

1 + z

is the characteristic polynomial of the difference scheme associated
with S.

Remark 4: The subdivision matrix D for piecewise constant splines over Z
is given in 8.3. It has the characteristic polynomial

σ0(z) = (1 + z) .

Remark 5: The matrix 1
2Sn−1 defined in 8.4 represents the difference scheme

underlying the subdivision algorithm for splines of degree n over Z, see 8.5.
Hence, the characteristic polynomial σn(z) of Sn is given by

σn =
1

2
(1 + z)σn−1(z)

=
1

4
(1 + z)2σn−2(z)

...

= 2−n(1 + z)nσ0(z) = 2−n(1 + z)n+1 ,

which, again, proves the identity ai = 2−n
(
n+1

i

)
in 8.4.
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8.10 Analyzing the four-point scheme

From the definition of the four-point scheme one can easily read off its char-
acteristic polynomial,

α(z) = −ω + (1/2 + ω)z2 + z3 + (1/2 + ω)z4 − ωz6

= (1 + z)β(z) ,

where
β(z) = −ω + ωz + 1/2z2 + 1/2z3 + ωz4 − ωz5

is the characteristic polynomial of the difference scheme. Thus, it follows
that

‖∇pk+1
2i ‖ = ‖ − ω∇pk

i + 1/2∇pk
i−1 + ω∇pk

i−2‖
≤ (1/2 + 2|ω|) sup

i
‖∇pk

i ‖

and, similarly,
‖∇pk+1

2i+1‖ ≤ (1/2 + 2|ω|) sup
i

‖∇pk
i ‖ .

Hence, for |ω| < 1/4, the difference polygons ∇Pk converge to zero and the
polygons Pk to a continuous curve. Further, according to 8.7 differentiabil-
ity depends on the second differences 2k∇2Pk. Due to 8.8, the associated
subdivision scheme has the characteristic polynomial

γ(z) =
2β(z)

1 + z
= −2ω + 4ωz + (1 − 4ω)z2 + 4ωz3 − 2ωz4 .

Again, one can show that the differences 2k∇2Pk go to zero if 0 < ω < 1/8.
Hence, the four-point scheme produces C1 interpolants in this case.

Remark 8: One can show [Dyn et al. ’91] that the four-point scheme pro-
duces C1 interpolants also if 0 < ω < (

√
5 − 1)/8 ≈ 0.15. However, the

four-point scheme does not produce C2 curves in general.

Remark 9: Kobbelt’s 2k-point schemes produce Ck−1 interpolants,
see [Kobbelt ’94].

8.11 Problems

1 The uniform B-spline Nn can be obtained by n-fold convolution of N0

with itself,
Nn = N0∗ n. . . ∗N0 .

2 Use the recursion formula for uniform B-splines in 8.1 to show that for
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n ≥ 0 ∑

i

Nn
i = 1 and

∫

IR

Nn
i = 1

and that for n ≥ 1

∑

i

(i +
n + 1

2
)Nn

i (u) = u .

3 Use the notation of 8.6 to show that ‖ck+1
2i − ck

i ‖ and ‖ck+1
2i+1 − 1/2(ck

i +
ck

i+1)‖ are bounded by some multiple of supi ‖ck
i ‖ ·

∑
i |αi|.

4 Conclude from Problem 3 that the piecewise linear curves
∑

ck
i N1

i (2ku)
converge uniformly if the differences ∇ck

i converge uniformly to zero.

5 Let Sk be the matrix of the subdivision algorithm for uniform splines of
degree k, as given in 8.4 and consider the sequence of polygons

Ck = Ck−1Sk, k = 1, 2, 3, . . . ,

where C0 = [ . . . ci . . . ] is an arbitrary control polygon. Show that the
polygons Ck converge to a C∞ curve [?].

6 Consider the uniform splines sn =
∑

ciN
n
i (u) of degree n over Z. For

any integer r ∈ IN, let
sn =

∑
bn

i Nn
i (ru)

be the corresponding representations over 1
r Z. Show that the control

points bn
i can be computed by the recursion

b0
ri = · · · = b0

ri+r−1 = ci

bn+1
i =

1
r
(bn

i−r+1 + · · · + bn
i ) ,

7 Consider two subdivision matrices R and S with characteristic polyno-
mials α(z) and (1 + z)α(z)/2, respectively. Given a polygon C, let the
polygons CRk converge to a curve c(u). Show that the polygons CSk

converge to the curve d(u) =
∫ u

u−1
c(u)du.
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9.2. Tensor product Bézier surfaces 129

This means
b(c1, d1) = b00, b(c1, d2) = b0n , etc.

Since the Bernstein polynomials sum to one,

• their products form a partition of unity,
∑

i

Bm
i =

∑

j

1 · Bn
j = 1 .

• Thus, b(u) is an affine combination of its Bézier points and the
Bézier representation is affinely invariant.

Since the Bernstein polynomials are non-negative in [0, 1], it follows that

• b(u) is a convex combination of the bi for every u ∈ [c,d].

Hence,

• the patch b[c,d] lies in the convex hull of its Bézier points.

Remark 4: Using the convex hull property separately for each coordinate a
bounding box is obtained for the surface patch b[c,d],

b(u) ∈ [min
i

bi, max
i

bi] for u ∈ [c,d] ,

which is illustrated in Figure 9.5.

Figure 9.5: A bounding box.
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130 9. Tensor product surfaces

9.3 Tensor product polar forms

Let A0(u), . . . , Am(u) and B0(v), . . . , Bn(v) be bases for the space of all poly-
nomials up to degree m and n, respectively. Further, let

Ai[u1 . . . um] and Bj [v1 . . . vn]

be the corresponding polar forms. Then, any tensor product surface

b(u, v) =
∑

i

∑

j

bijAi(u)Bj(v)

has the tensor product polar form

b[u1 . . . um, v1 . . . vn] =
∑

i

∑

j

bijAi[u1 . . . um]Bj [v1 . . . vn] .

This polar form has the following three properties.

• b[u1 . . . um, v1 . . . vn] agrees with b(u, v) on its diagonal,

which means b[u . . . u, v . . . v] = b(u, v).

• b[u1 . . . um, v1 . . . vn] is symmetric in the variables ui and symmetric
in the variables vj,

which means that

b[s1 . . . sm, t1 . . . tn] = b[u1 . . . um, v1 . . . vn]

for any permutations (s1, . . . , sm) and (t1, . . . , tn) of (u1, . . . , um) and (v1, . . . , vn),
respectively.

• b[u1 . . . um, v1 . . . vn] is affine in each variable.

The Bézier points of b(u, v) over some interval [a, b] × [c, d] can easily be
obtained by the main theorem 3.2. For any fixed u, the polynomial b(v) =
b(u, v) has the Bézier points

bj(u) = b[u m. . . u, c n−j. . . cd j. . . d] , j = 0, . . . , n ,

and, for each j, these polynomials bj(u) have the Bézier points

bij = b[a m−i. . . ab i. . . b, c n−j. . . cd j. . . d] .

Thus, we have proved the following form of the main theorem
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9.4. Conversion to and from monomial form 131

A tensor product polynomial b(u, v) with tensor product polar
form b[u1 . . . um, v1 . . . vn] has the Bézier points

bij = b[a m−i. . . ab i. . . b, c n−j. . . cd j. . . d]

over any interval [a, b]× [c, d].

Any tensor product polar form b[u1 . . . um, v1 . . . vn] can be computed by the
generalized de Casteljau algorithm from the points

bj(u) = b[u1 . . . um, c m−j. . . cd j. . . d] , j = 0, . . . , m ,

and these from the Bézier points bij . Since the Bézier points are unique, any
tensor product polynomial b(u, v) of degree ≤ (m,n) has a unique tensor
product polar form b[u1 . . . um, v1 . . . vn].

9.4 Conversion to and from monomial form

The monomial form of a polynomial tensor product surface

b(u, v) =
m∑

k=0

n∑

l=0

akl

(
m

k

)(
n

l

)
ukvl

can be written more concisely with bold vector notation as

b(u) =
m∑

k=0

ak

(
m
k

)
uk ,

where u = (u, v),k = (k, l) and m = (m,n).

The conversion of the monomial form to the Bézier representation of b(u)
over [0, 1]2 is straightforward. Applying the conversion formula in 2.8 for
univariate polynomials twice gives

b(u) =
m∑

i=0

biB
m
i (u) ,

where

bi =
i∑

k=0

(
i
k

)
ak .

Similarly, by applying the conversion formula in 2.9 twice, we obtain the
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132 9. Tensor product surfaces

converse relation

ak =
k∑

i=0

(−1)k+l−i−j

(
k
i

)
bi .

Remark 5: If b(u) is a bilinear polynomial, i.e., a biaffine map, then ak = 0
for all k � (1, 1). Hence, b(u) has the Bézier points

bij = a00 + ia10 + ja01 + ija11

= b(i/m, j/n) .

This property is referred to as the bilinear precision of the Bézier repre-
sentation.

Figure 9.6: Uniform Bézier net on a bilinear interpolant.

9.5 The de Casteljau algorithm

A bivariate polynomial surface in Bézier representation,

b(u) =
∑

i

biB
m
i (s) ,

can be evaluated at any s = (s, t) by (m + 2) or (n + 2) applications of de
Casteljau’s algorithm for curves. This leads to the following surface algorithm

Use de Casteljau’s curve algorithm to compute

1. the points bi =
∑n

j=0 bijB
n
j (t) and

2. the surface point b(u) =
∑m

i=0 biB
m
i (s) .

Remark 6: For example, consider the polynomial b(s, t) =
∑

bijB
3,2
ij (s, t)

whose Bézier matrix [bij ] appears in the upper left corner of Figure 9.7. This
Figure illustrates the algorithm above by showing the 8 = 4 · 2 de Casteljau
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9.8 Piecewise bicubic C1 interpolation

Interpolation schemes for curves can be extended in a straightforward manner
to tensor product schemes. We describe the principle for the example of the
cubic interpolation scheme discussed in 4.5.

Given (m+1)×(n+1) interpolation points pij with corresponding parameter
values (ui, vj), for i = 0, . . . , m and j = 0, . . . , n, we construct a piecewise
bicubic C1 surface s(u, v) such that s(ui, vj) = pij . More exactly, we con-
struct for all (i, j) the Bézier points b3i,3j , . . . ,b3i+3,3j+3 defining the bicubic
segment of s over the interval [ui, ui+1]× [vj , vj+1].

Let P = [pij ] be the (m + 1) × (n + 1) matrix formed by the interpolation
points. Note that the entries are coordinate columns rather than scalars, in
general. Further, let S and T be the (m+1)× (3m+1) and (n+1)× (3n+1)
matrices of two linear interpolation schemes over the abscissae u0, . . . , um

and v0, . . . , vn, respectively, as described in 4.5, Remark 9.

Then, the tensor product interpolation scheme based on S and T is as follows.

1 Interpolate every column of P by computing A = StP .

2 Interpolate every row of A by computing B = AT .

The desired Bézier points are the entries of B = [bij ] = StPT . See Fig-
ure 9.12 for an illustration.

Figure 9.12: Tensor product interpolation scheme.

Row and column interpolation are interchangeable. Namely, row interpola-
tion gives Ct = PT and subsequent column interpolation B = StC = StPT .
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9.11. Bicubic C1 splines of arbitrary topology 139

describe how to build such spline surfaces, which can be used to interpolate
the vertices of arbitrary quadrilateral nets.

Any piecewise bicubic surface with simple C1 joints is completely determined
by the inner Bézier points of each patch. These are marked by ◦ in Fig-
ure 9.16. The boundary Bézier points marked by and c, respectively, can
be computed as the midpoints of two adjacent Bézier points, respectively.

The inner Bézier points next to a vertex surrounded by three or more than
four patches must coincide in order to obtain C1 joints along all patch bound-
ary curves emanating from this so-called extraordinary vertex. Moreover,
the patches around an extraordinary vertex have a common tangent plane
at this vertex only if the interior Bézier points connected by dashed lines in
Figure 9.16 are all coplanar and if they satisfy the conditions given in 9.10.

Figure 9.16: A bicubic C1 spline.

Remark 12: The coplanarity condition above can, in general, only be sat-
isfied if each patch has at most one extraordinary vertex. This assumption
is always satisfied if one subdivides each patch into four subpatches.

Remark 13: The inner Bézier points ◦ determine the spline surface com-
pletely. However, they must meet certain restrictions for the spline to be a
C1 surface. Therefore, Reif calls these points quasi control points.

Remark 14: Reif has also developed a projection mapping arbitrary control
nets onto quasi control nets satisfying the conditions above, see Problem 6.
A more general method is presented in 14.6.
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146 10. Bézier representation of triangular patches

This property is referred to as the linear precision of the Bézier represen-
tation.

Remark 2: As a consequence of the linear precision, a functional surface

b(x) =

[
x

b(x)

]
, where b(x) =

∑
biBni ,

has the Bézier points [ati bi]t, where nai = [a0 . . . ad]i, as illustrated in Fig-
ure 10.5. The bi are called Bézier ordinates and the corresponding points
ai the Bézier abscissae of b(x).

Figure 10.5: A quadratic function with its Bézier polyhedron.

10.4 The de Casteljau algorithm

A Bézier simplex b =
∑

biBni can be evaluated by a generalization of de
Casteljau’s algorithm. Using the recurrence relation of the Bernstein poly-
nomials repeatedly as in the case of curves, we first obtain

b(x) =
∑

|i|=n

biBni (u)
=

∑

|i|=n−1

biBn−1i (u)
and after n− 2 further steps

b(x) =
∑

|i|=0

biB0i (u) = b000 ,

where
bi = [bi+e0 . . .bi+ed

]u .

An example is illustrated in Figure 10.6.

The intermediate points bi, |i| = n, . . . , 0, of the de Casteljau algorithm in
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148 10. Bézier representation of triangular patches

Its derivative with respect to t at t = 0 is given by

Dvb(p) =
d
dt

b (x(t))
∣∣∣
t=0

= v0
∂

∂u0
b + · · ·+ vd

∂

∂ud
b

= n
∑

j
cjBn−1

j ,

where
cj = v0bj+e0 + · · ·+ vdbj+ed

,

which we abbreviate by cj = ∆vbj as illustrated in Figure 10.7.

Figure 10.7: The differences cj.

Similarly, one can compute higher derivatives. An rth directional derivative
Dv1 . . . Dvrb has the Bézier coefficients ∆v1 . . . ∆vrbj, where |j| = n − r.
The difference operator ∆v commutes with the steps of the de Casteljau
algorithm since the computation of affine combinations of affine combinations
is commutative, see 2.6.

Hence, we can compute an rth derivative also by first computing n− r steps
of the de Casteljau algorithm and then r differencing steps. In particular, it
follows that the points b10...0, . . . ,b0...01 computed in the next to last step of
the de Casteljau algorithm span the tangent plane of b at x.

Remark 3: If d = 2, we can view the Bézier net of a polynomial b(x) =∑
biB

n
i (u) as a piecewise linear function p(x) over a0a1a2. Then,

the directional derivative Dvp(x) of the Bézier net contains the
Bézier points of Dvb(x).

This fact is illustrated in Figure 10.8 for a functional surface.
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Figure 10.8: A Bézier net with its derivative.

10.6 Convexity

In the following we restrict ourselves to bivariate functions. Hence, we set
d = 2 and u = [u, v, w]t.

Figure 10.9: Convexity of a Bézier net.

Given the Bézier representation of a polynomial over some triangle a0a1a2,
there is a piecewise linear polynomial p(x) that interpolates the Bézier ordi-
nates bi at the corresponding abscissae Ai/n. We call it the Bézier polyhe-
dron of b(x) over A and show that

a polynomial b(x) is convex if its Bézier polyhedron p(x) is convex.

The converse does not hold in general, see 3.13 Problem 11.

For a proof, let

v0 = a2 − a1 , v1 = a0 − a2 , v2 = a1 − a0
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10.7 Limitations of the convexity property

Functional polynomials with a convex Bézier polyhedron are convex, as we
have seen. The converse, however, is not true in general. Consider the
quadratic polynomial

b = 3B200 −B101 + 3B002 ,

which is shown with its Bézier polyhedron in Figure 10.11.

Figure 10.11: A convex polynomial patch with non-convex Bézier net.

Obviously, the Bézier polyhedron is not convex, but b is convex. Namely,
the second partial derivatives are b00 = b11 = 6 and b01 = 2. Thus, for any
v = αv0 + βv1 6= o it follows that

DvDvb = α2b00 + 2αβb01 + β2b11

= 4(α2 + β2) + 2(α + β)2 > 0 ,

which means that b is even strictly convex.

The Bézier polyhedra of all higher degree representations of b are also not
convex since for any nth degree representation of the constant polynomial
b01 = 2 all Bézier ordinates equal 2. This result is striking since the nth
degree Bézier polyhedra of b converge to b if n goes to infinity, see 11.9.
Thus, we have a sequence of non-convex functions with a strictly convex
limit.

Another negative result is due to Grandine [Grandine ’89]. Consider a non-
convex quadrilateral abdc, as the ones illustrated in Figure 10.12, and let b
and c be polynomials with C1 contact along the line ad. Then, if b and c
have convex Bézier nets over adc and abd, respectively, they must be linear
over ad.

Because of the C1 contact, we have b14 = c14(= Dv1Dv4c) along ad. Since
there are positive constants α and β such that v1 = αv2 +βv4, the convexity

prau
Hervorheben



11.2. The main theorem 157

Remark 2: The barycentric coordinate vector u and the affine coordinate
vector x are related by two transformations, given by

x = x(u) = [a0a1a2]u and u = u(x) = p + [v1v2]x ,

where p; v1, v2 represents the affine coordinate system in barycentric coor-
dinates. Since these transformations are affine, one can transform a polar
form a[x1 . . . xn], given by affine coordinates, to the corresponding po-
lar form b[u1 . . . un] = a[Au1 . . . Aun] and vice versa, i.e., a[x1 . . .xn] =
b[u(x1) . . . u(xn)].

11.2 The main theorem

The uniqueness of the symmetric polynomials and their relationship to the
Bézier representation is given by the following extension of the main theo-
rem.

For every polynomial surface b(x) of degree ≤ n, there exists only
one symmetric n-variate multiaffine polynomial b[x1 . . . xn] with
diagonal b[x . . . x] = b(x), and the points

b0
i = b[p i. . . p q j. . . q r k. . . r]

are the Bézier points of b(x) over pqr.

Proof: Consider the points

bl
i = b[p i. . . p q j. . . q r k. . . r x1

l. . . xl] , i + j + k + l = n .

Since bn
o = b[x1 . . . xn] is symmetric and multiaffine, it can be computed

from the points b0
i by the recursion formula

(1) bl
i = ulbl−1

i+e1 + vlbl−1
i+e2 + wlbl−1

i+e3 ,

where ul, vl, wl are the barycentric coordinates of xl with respect to pq,
see Figure 11.1, where the points b[x1x2x3] are labelled by their arguments
x1x2x3. Thus, different symmetric multiaffine maps must differ at some
argument [p i. . . p q j. . . q r k. . . r].

If all xl equal x, then the recursion formula above reduces to de Casteljau’s
algorithm for the computation of b(x). Consequently, since the Bézier rep-
resentation is unique, the points b0

i are the Bézier points of b(x) over pqr
and, furthermore, there can be only one symmetric n-affine polynomial with
the diagonal b(x). 3
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Figure 11.1: The generalized de Casteljau algorithm.

11.3 Subdivision and reparametrization

Recursion formula (1), which is illustrated in Figure 11.1, reveals another
important property of de Casteljau’s algorithm. The computation of b(x)
generates also the Bézier points

b[p i. . . pq j. . . qx k. . . x], b[p i. . . px j. . . x r k. . . r] ,

and
b[x i. . . xq j. . . q r k. . . r]

of b over pqx, pxr, and xqr, respectively. Figure 11.2 shows an example for
n = 3.

The Bézier nets of b(x) over pqx, pxr, and xqr form one connected net. It
is folded if x lies outside pqr. The computation of this composed net will be
referred to as the subdivision of the Bézier net over pqr in x.

One can compute the Bézier net of a polynomial surface b over a second tri-
angle xyz by repeated subdivision from the net over pqr, see [Prautzsch ’84a,
Boehm et al. ’84]. First one subdivides the net over pqr in x, then one sub-
divides the net over xqr in y, and, finally, one subdivides the net over xyr
in z, see Figure 11.3.

A permutation of pqr and xyz results in a different construction. If pos-
sible, one should subdivide at interior points in order to avoid non-convex
combinations.
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11.3. Subdivision and reparametrization 159

Figure 11.2: Subdividing a Bézier net.

Figure 11.3: Reparametrization by repeated subdivision.

Figure 11.4 shows a situation, where it is impossible to avoid non-convex
combinations with the above construction, no matter how one permutes pqr
and xyz.

Remark 3: The construction above requires one to compute 3 · (
n+2

3

)
=

O(n3) affine combinations.

Remark 4: Every single Bézier point b[x i. . . xy j. . . y z k. . . z] of b over
xyz can also be computed by the generalized de Casteljau algorithm, see
Figure 11.1. The affine combinations computed by this algorithm are convex
if x,y and z all lie in the triangle pqr.

Remark 5: To compute the Bézier net over xyz by
(
n+2

2

)
applications of

the generalized de Casteljau algorithm, one needs to compute
(
n+2

2

) · (n+3
3

)
=

O(n5) affine combinations.
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Figure 11.4: Special reference triangles.

11.4 Convergence under subdivision

The Bézier net of b(x) over a triangle pqr is a good approximation of the
patch b if the triangle is sufficiently small. To make this statement precise, let
pqr be any triangle in some fixed bounded region and let h be its diameter.
Furthermore, let

i = p
i

n
+ q

j

n
+ r

k

n

represent the point with barycentric coordinates i/n. Then,

there is a constant M not depending on pq such that

max
i
‖b(i)− bi‖ ≤ Mh2 .

For a proof, let D be the differential of b[x i . . . i] = · · · = b[i . . . i x] at
x = i. Expanding the symmetric polynomial b[x1 . . . xn] around [i . . . i], we
obtain

bi = b[i . . . i] + iD[p− i] + jD[q− i] + kD[r− i] + O(h2)
= b(i) + O(h2) ,

which concludes the proof. 3

An application of this approximation property is discussed in the following
section.

11.5 Surface generation

As a consequence of section 11.4, repeated subdivision of a Bézier net pro-
duces arbitrarily good approximations of the underlying surface. We discuss
three subdivision strategies.

(1) Subdividing triangles at their centers, as illustrated in Figure 11.5, leaves
the maximum diameter of the reference triangles unchanged. Hence, the
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11.7. Simple Cr joints 163

The derivatives of b and c up to order r agree over qr if and only
if for all l = 0, . . . , n− r the two polynomials
b[x r. . . xq l. . . qr n−r−l. . . r] and c[x r. . . xq l. . . qr n−r−l. . . r] are
equal.

Figure 11.8: Sabin’s simple C1 joint.

Figure 11.9: Farin’s simple C2 joint.

Remark 6: The shaded quadrilaterals in Figure 11.8 and 11.9 are different
affine images of the quadrilateral pqrs. Consequently, any m triangular
patches bi(x), i = 1, . . . , m, enclosing a common vertex have simple C1

joints at this vertex if and only if their parameter triangles form an m-gon
that is an affine image of the m-gon formed by the respective corner triangles
of the associated Bézier nets.

Remark 7: Since two polynomials are equal if and only if their polar forms
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164 11. Bézier techniques for triangular patches

are equal, b(x) and c(x) have identical derivatives up to order r over the line
qr if and only if their polar forms satisfy the equation

b[x1 . . . xr q j. . . q r k. . . r] = c[x1 . . . xr q j. . . q r k. . . r]

for arbitrary variables x1, . . . ,xr and for all j and k with r + j + k = n.
This condition is used in [Lai ’91] to characterize multivariate Cr splines
over arbitrary triangulations.

11.8 Degree elevation

A polynomial surface of degree n also has a Bézier representation of any
degree m higher than n. As in the case of curves, a conversion to a higher
degree representation is called degree elevation.

Given an nth degree Bézier representation,

b(x) =
∑

biBni (u) , x = [pqr]u ,

of some polynomial surface b(u) over a triangle pqr, we show how to obtain
its Bézier representation of degree n + 1. In analogy to the derivation for
curves in 3.11, we use the symmetric polynomial b[x1 . . . xn] of b(x). The
polynomial

c[x0 . . . xn] =
1

n+ 1

n∑

l=0

b[x0 . . . x
∗
l . . . xn]

is multiaffine, symmetric and agrees with b(x) on its diagonal. Hence, due
to the main theorem in 11.2, it follows that the points

bj = c[p j0. . . pq j1. . . q r j2. . . r]

are the Bézier points of b(x) over pqr in its representation for degree n+ 1.
Consequently,

bj =
j0

n+ 1
b[p j0−1. . . pq j1. . . q r j2. . . r]

+
j1

n+ 1
b[p j0. . . pq j1−1. . . q r j2. . . r]

+
j2

n+ 1
b[p j0. . . pq j1. . . q r j2−1. . . r] .

Figure 11.10 illustrates the associated construction for n = 2.
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be written as
(

n

i

)(
k1

m
· · · k1−i1+1

m−i1+1

)(
k2

m−i1
· · · k2−i2+1

m−i1−i2+1

)(
k3

m−i1−i2
· · · k3−i3+1

m−n+1

)
,

from which we conclude that

βik ≤
(

n

i

)(
k1

m
+

n

m− n

)i1 (
k2

m
+

n

m− n

)i2 (
k3

m
+

n

m− n

)i3

and

βik ≥
(

n

i

)(
k1

m
− n

m

)i1 (
k2

m
− n

m

)i2 (
k3

m
− n

m

)i3

.

Thus, we find
βik = Bn

i (k/m) + O(1/m)

and, therefore,
dk =

∑
biB

n
i (k/m) + O(1/m) .

Consequently, the mth degree Bézier nets of b(x) converge to b(x) linearly
in 1/m, see [Farin ’79, Trump et al. ’96].

11.10 Conversion to tensor product
Bézier representation

Let b(x) be a bivariate polynomial with polar form b[x1 . . .xn], and let
xst = x(s, t) be any biaffine map that maps the unit square [0, 1]2 onto a
convex quadrilateral, see Figure 11.11. Then the reparametrized polynomial

c(s, t) = b(x(s, t))

is a tensor product polynomial of degree (n, n) in (s, t). Its tensor product
polar form is given by

c[s1 . . . sn, t1 . . . tn] =
1
n!

∑
τ

b[x(s1, τ1) . . .x(sn, τn)] ,

where the sum extends over all permutations (τ1, . . . , τn) of (t1, . . . , tn). To
verify this, one checks that c satisfies the three characterizing properties: the
diagonal, symmetry and affinity property.

Knowing the tensor product polar form, we can apply the main theorem 9.3
to obtain the Bézier points of c(s, t) over [0, 1]2. These are the points

cij = c[0 n−i. . . 01 i. . . 1, 0 n−j. . . 01 j. . . 1] ,

prau
Hervorheben

prau
Bleistift

prau
Hervorheben

prau
Bleistift



12 Interpolation

12.1 Hermite interpolation — 12.2 The Clough-Tocher interpolant — 12.3 The

Powell-Sabin interpolant — 12.4 Surfaces of arbitrary topology — 12.5 Singular

parametrization — 12.6 Quintic C1 splines of arbitrary topology — 12.7 Problems

Given the values and derivatives of a bivariate function, it is quite easy to
construct smooth piecewise polynomial interpolants using their Bézier repre-
sentation. However, there is no straightforward extension to arbitrary para-
metric surfaces as, for example, spheres. General Cr joints or singular para-
metrizations are necessary to build such interpolants.

12.1 Triangular Hermite interpolation

Given a triangulation T of some polygonal domain in IR2, one can construct
a piecewise polynomial surface of degree 4r + 1 that interpolates any given
derivatives up to order 2r at the vertices of T and is r-times differentiable.
The Bézier representation is a very handy tool to describe this construction.

Figure 12.1 shows one triangle of a triangulation and the Bézier abscissae,
see 10.3, of the interpolant over that triangle for r = 2.

There are three kinds of Bézier abscissae. The Bézier ordinates at the abscis-
sae c are defined by the prescribed derivatives, the Bézier ordinate at c can
be chosen arbitrarily, and the Bézier ordinates at the abscissae c, c, c depend
on the corresponding ordinates over the adjacent triangles according to the
Cr-conditions. One can choose the ordinates at c, c, c in one triangle arbi-
trarily. Then, the corresponding Bézier ordinates in the adjacent triangles
are determined by the Cr-conditions.
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176 12. Interpolation

b00n = b1,0,n−1 = b0,1,n−1

and
b1,1,n−2 = αb2,0,n−2 + βb0,2,n−2 + γb00n

with α, β > 0 , α+β +γ = 1 and independent points b00n,b2,0,n−2,b0,2,n−2.

The derivatives of b(u, v) vanish at u = (u, v) = (0, 0). However, there exists
a reparametrization u(x) such that c(x) = b(u(x)) is regular at x = u−1(o).

After a suitable affine transformation, we obtain

b00n = 0 , b2,0,n−2 =
2

n(n− 1)




1
0
0


 , b0,2,n−2 =

2
n(n− 1)




0
1
0


 .

Hence, the Taylor expansion of b(u) at u = (0, 0) is of the form

b(u) =
[
x(u)

0

]
+ d(u) ,

where

x(u) =
[
u2 + 2αuv

v2 + 2βuv

]
= O(‖u‖2)

and ‖d(u)‖ = O(‖u‖3). Obviously, x and y are strictly monotone in u
and v for u, v ≥ 0. Hence, x(u) is one-to-one for u, v ≥ 0. Furthermore,
x(u) is regular for u 6= 0. Consequently, c(x) = d(u(x)) is continuously
differentiable if c(x) has continuous partial derivatives. These partials are
given by

[cxcy] = [dudv]
[

xu xv

yu yv

]−1

=
1

xuyv − xvyu
[dudv]

[
yv −xv

−yu xu

]
,

which shows that
‖cx‖ = O(‖u‖) = O(

√
‖x‖) .

The same argument can be made for dy. Hence, c(x) and, therefore, b(u(x))
are continuously differentiable.

Remark 2: Even if α, β < 0 and 4αβ > 1, one can show that b(u) has a
continuous tangent plane [Reif ’95a].

12.6 Quintic C1 splines of arbitrary topology

Singular parametrizations can be used to construct arbitrary C1 surfaces
composed of triangular patches with prescribed positions and tangent planes
at their vertices. The following description of one such surface construction
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One says that p and q have a general C1 or geometric C1- or, in short,
G1 joint in x = 0 if they have equal normals along this parameter line, i.e.,
if

px × py

‖px × py‖
=

qx × qy

‖qx × qy‖
for x = 0 .

Equivalently, one can characterize G1-continuity by requiring that there are
connection functions λ(y), µ(y) and ν(y) such that for x = 0 and all y

(1) λpx = µqx + νqy and λµ > 0 ,

except for isolated zeros.

In particular, if p and q have a G1 joint and are polynomials,
then the connection functions are also polynomials, and, up to a
common factor, we have

degree λ ≤ degree qx(0, y) + degree qy(0, y) ,
degree µ ≤ degree px(0, y) + degree qy(0, y) ,
degree ν ≤ degree px(0, y) + degree qx(0, y) .

For a proof, we compute the vector product of equation (1) with qx and qy.
This gives

λpx × qx = νqy × qx , and
λpx × qy = µqx × qy .

Recall that q is regular. Hence, at least one coordinate, say the first of
[qx × qy], denoted by [qx × qy]1, is non-zero. Since equation (1) can be
multiplied by a factor, we may assume that

λ = [qx × qy]1 .

This implies
µ = [px × qy]1 and ν = −[px × qx]1 ,

which proves the assertion. 3

Remark 1: Often, one sets λ = 1. Then µ and ν are rational, in general.

Remark 2: The proof given above also holds for rational polynomials p and
q. Then, the functions λ, µ and ν are rational up to a common factor with
the same degree estimates as above.

Remark 3: Any G1 joint is a simple C1 joint after a suitable parame-
ter transformation. Namely, if p and q satisfy the G1-condition (1), then
a(x, y) = p(λx, y) and b(x, y) = q(µx, νx + y) have a simple C1 joint, see
9.7 and 11.7.
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13.2. Joining two triangular cubic patches 181

Remark 4: Whether two patches have a G1 joint does not depend on their
parametrization. However, the connection functions do depend on the para-
metrization. The maximum degree of the connection function is invariant
under affine reparametrization.

13.2 Joining two triangular cubic patches

Consider two triangular cubic patches

p(u) =
∑

piB
3
i (u) and q(u) =

∑
qiB

3
i (u) ,

where 0 ≤ i = (i, j, k) and |i| = i + j + k = 3 and pi = qi for i = 0 such
that p and q join continuously at u = 0 and have common tangent planes
at e1 = (0, 1, 0) and e2 = (0, 0, 1). This configuration is illustrated in Figure
13.2. The shaded quadrilaterals are planar but not necessarily affine.

Figure 13.2: Moving interior Bézier points so as to achieve a G1 joint.

In general, we can move both interior points p111 and q111 so that
p and q join G1-continuously along u = 0.

In particular, we show how to obtain such a smooth joint with linear con-
nection functions λ(v) , µ(v) and ν(v). Then, the G1-condition for p and q
along u = 0 becomes a cubic equation in w = 1 − v. Denoting the partial
derivatives with respect to the directions e0 − e2 and e2 − e1 by subindices 0
and 1, respectively, this cubic equation is

λp0 = µq0 − νq1 , λµ > 0 .

At v = 0, we know the derivatives p0,q0 and q1. Hence, this equation
establishes a linear system for λ0 = λ(0), µ0 = µ(0) and ν0 = ν(0), with a
one parameter family of solutions. Similarly, there is a one parameter family
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182 13. Constructing smooth surfaces

of solutions λ1, µ1 and ν1 at v = 1. We choose arbitrary solutions at v = 0
and v = 1, which determine the linear functions λ, µ and ν. Since a cubic
is determined by its values and derivatives at two points, here v = 0 and
v = 1, we are also interested in the derivative and, therefore, differentiate the
G1-condition along u = 0. Thus, we obtain

λp01 − µq01 = νq11 + ν′q1 − λ′p0 + µ′q0 .

Expressing p01 , q01 etc. in terms of the Bézier points, we obtain at e1 the
equations

p01 = 6(p003 + p111 − p012 − p102) ,

q01 = 6(q021 + q111 − q012 − q120)
etc.

and similar expressions for p01,q01, etc. at e2. The points q11,q1,q0, and
p0 do not depend on p111 and q111 for v = 0 and v = 1. Substituting these
expressions into the differentiated G1-condition leads to a linear system for
p111 and q111 given by

[p111q111]
[

λ0 λ1

−µ0 −µ1

]
= [w0w1] ,

where w0 and w1 are combinations of known Bézier points pi and qi, except
p111 and q111. This system has a solution if the matrix

[
λ0 λ1

−µ0 −µ1

]

is invertible. Hence, a solution exists, unless λ(y) : µ(y) = constant. Only
for the configuration illustrated in Figure 13.3, a solution might not exist. ¦

Figure 13.3: Critical configuration.

In fact, there is no solution if λ(y) : µ(y) is constant, if both quadrilaterals
are not affine and if the common boundary p(0, y) = q(0, y) is a regular
cubic, i.e., if qy(0, y) is a quadratic not passing through the origin.

prau
Hervorheben

prau
Hervorheben

prau
Hervorheben

prau
Hervorheben

prau
Hervorheben



13.3. A triangular G1 interpolant 183

Namely, rewriting the G1-condition as

px −
µ

λ
qx =

ν

λ
qy

results in a quadratic on the left. Since qy is also quadratic without real
root, it follows that ν/λ must be constant. This, finally, contradicts the
assumption that the two quadrilaterals shown in Figure 13.3 are not affine.

If q(0, y) is quadratic or non-regular, a solution exists with linear functions
λ, µ and ν, see Problem 3.

13.3 A triangular G1 interpolant

In 1985, Bruce Piper [Piper ’87] presented a scheme to construct a piecewise
quartic G1 surface interpolating a triangular network of cubic curves, as
illustrated in Figure 13.4. We review the basic construction, but rule out
critical situations so that cubic patches suffice.

Figure 13.4: A triangular G1-net of cubic curves.

Adjacent “triangles” of a cubic net exhibit the configurations discussed in
13.2. For simplicity, we assume that there are no critical configurations as
in Figure 13.3. Then, any “triangle” can be interpolated by a macro patch
consisting of three cubic patches, as described below. Figure 13.5 shows the
Bézier points of such a macro patch schematically.

The Bézier points c on the boundary are given by the cubic net. The Bézier
points care the centroids of their three neighbors cwith which they form a
planar quadrilateral which is shaded in the Figure.
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13.5. The parity phenomenon 185

Figure 13.6: A vertex enclosed by n patches, where n = 6.

For z = 0, these equations form the cyclic linear system

[p1
xy . . .pn

xy]




λ1 −µ1

−µ2 λ2

. . .
−µn λn


 [r1 . . . rn] ,

where
ri = −λ′ip

i
x + µ′ip

i+1
y + ν′ip

i+1
x + νipi+1

xx .

We abbreviate this system by TA = R.

13.5 The parity phenomenon

The cyclic matrix A of the twist constraints exhibits the following phenom-
enon. The rank of A is n if n is odd, and it is n− 1 if n is even. Thus, A is
non-singular only for odd n. Consequently, the twist constraints are solvable
if the number n of patches is odd, while, in general, there is no solution if
the number is even. In order to verify this surprising fact, we observe that

detA = λ1 . . . λn − µ1 . . . µn

= Πλi −Πµi .

Computing, the vector product of

λipi
x = µipi+1

y + νipi+1
x ,

with pi+1
x = pi

y gives

λi : µi = [pi+2
x × pi+1

x ] : [pi
x × pi+1

x ] ,

which implies that
Πλi : Πµi = (−1)n
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14 Gk-constructions

14.1 The general Ck joint — 14.2 Gk joints by cross curves — 14.3 Gk joints by

the chain rule — 14.4 Gk surfaces of arbitrary topology — 14.5 Smooth n-sided

patches — 14.6 Multi-sided patches in the plane — 14.7 Problems

Two patches join smoothly if they can be (re-)parametrized so that their
derivatives up to some order are identical along a common boundary curve.
For any fixed reparametrization, this smoothness condition means that the
derivatives of both patches at any common point are related by a linear
transformation. This is analogous to the curve case.

In this chapter, we discuss these smoothness conditions and use them to build
surfaces of arbitrary topological form and arbitrarily high smoothness order.

14.1 The general Ck joint

Two regular patches p and q with a common boundary curve b are said to
have a general Ck joint along b if they have a simple Ck joint locally for
each point b0 on b after some regular reparametrization. This means that,
locally, there are regular reparametrizations u and v such that p◦u and q◦v
have identical derivatives up to order k along b, see Figure 14.1. It suffices
to reparametrize only one patch, for example q by v ◦ u−1, see Figure 14.2.
A general Ck joint is also referred to as a Gk joint.

If p and q have a Gk joint at some point b0, we obtain a local Ck parametriza-
tion r(x, y) of the union of both patches simply by a non-tangential projection
π into some plane P , as illustrated in Figure 14.3.

The regular Ck-maps φ = π ◦ p ◦ u and ψ = π ◦ q ◦ v, have a Ck joint along
π(b) in a neighborhood of π(b0). Therefore,

r(x, y) =
{

p ◦ u ◦ φ−1(x, y) if (x, y) lies in π(p)
q ◦ v ◦ ψ−1(x, y) if (x, y) lies in π(q)
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Figure 14.2: A general Ck joint brought into a simple form.

Figure 14.3: Parametrization by projection.

be any partial derivatives of p and q of order i + j = k − 1. Then, the
induction assumption implies that

p(πb(t)) = q(πb(t)) .

Differentiating this equation with respect to t, we obtain for t = t0

px(o) = qx(o) .

Hence, almost all k-th partial derivatives of p and q are equal and we need
to show that

∂k

∂yk
[p(o) − q(o)] = o .
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14.4. Gk surfaces of arbitrary topology 193

mials of certain degrees.

The Gk-conditions are simpler if u is linear in x. In this case, ux s...x is zero
for s = 2, . . . , k, and the Gk-conditions reduce to

p = q ,

px = qu α + qv β ,

pxx = quuα2 + 2quvαβ + qvvβ2 ,

...

px k...x =
∑

i+j=k

(
k

i

)
qu i...uv j...vαiβj ,(1)

where α = α(y) = ux(0, y) and β = β(y) = vx(0, y).

Note that the right hand sides also represent the partial derivatives of q with
respect to the direction [α β]t = ux.

Remark 2: A mixed partial derivative px i...xy j...y can be expressed in terms
of the mixed partial derivatives of q up to total order i + j and the mixed
partial derivatives of u(x, y) up to order (i, j). For example,

pxy = quuuxuy + quv(uxvy + uyvx) + qvvvxvy + quuxy + qvvxy .

Remark 3: In particular, if u(x, y) is a dilation in x and y, i.e.,

u(x, y) = [c1x c2y]t ,

then all mixed partial derivatives px i...xy j...y can be expressed in terms of ux, vy

and the mixed partial derivatives of q up to order (i, j).

14.4 Gk surfaces of arbitrary topology

In this section, we present a construction of smooth free-form surfaces. These
surfaces interpolate the vertices ci of a given quadrilateral net and smoothly
contact prescribed polynomial surfaces si at these vertices.

The resulting surface is Gk-continuous and consists of tensor product patches
parametrized over [0, 1]2, where each patch corresponds uniquely to a quadri-
lateral of the given net and vice versa.

For notational simplicity, we assume that the given net is orientable and
has no boundary.

We call a vertex regular, if it has exactly four neighbors and irregular
otherwise. To simplify the complex construction, we assume further that
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196 14. Gk-constructions

Figure 14.6: An edge polynomial.

are of minimal degree. Therefore, if ci and cj are regular, then bij has
degree 2k + 1 and, otherwise, if ci or cj is irregular, then ∂r

∂yr bij has the
degree 3k+1−r. The Bézier points of bij are shown schematically in Figure
14.7 for k = 2, where ci is irregular. The points determined by the C2k

contact at ci are marked by triangles 4, the points determined by the Ck,k

contact at cj by squares and the points determined by the minimal degree
constraints by circles ◦. The points marked by dots · are non-interesting.

Figure 14.7: Schematic view of the Bézier points of an edge polynomial.

Analogously, we get a second polynomial bji for the oppositely directed edge
cjci. Due to our construction, both polynomials have a simple Ck contact
along the parameter line y = 0,

bij(x, y) k=
y = 0

bji(1− x,−y) .

Further, due to our construction, any two polynomials bij and bik belonging
to a vertex ci have Gk,k- or G2k contact at ci.

3. For each quadrilateral of the given net, we construct a patch p(u, v) of the
final Gk surface from the four associated edge polynomials. For each edge
cicj , we use a reparametrization

xij(u, v) =
∑

brsB
2k,2k
rs (u, v)

prau
Hervorheben



15.2. General stationary subdivision and masks 207

Figure 15.1: Refining and averaging a net.

i+n+1. Applying the convergence result in 6.3 twice, we obtain the estimate

sup
i,j
‖s((i, j)/2m)− cm

ij‖ = O(1/4m) ,

provided that the second derivatives of s are bounded over IR2.

15.2 General stationary subdivision and masks

Any refinement equation

cm+1
i =

∑

k

cm
k γi−2k

with a finite number of non-zero and arbitrary coefficients γi represents a
general stationary subdivision scheme. If the γij are products of the
form αiβj , then this scheme is a tensor product scheme, as discussed in 15.1.

The refinement equation combines four different affine combinations: The
indices k of the weights γk used to compute a point cm+1

i form the set i+2Z2,
which is either

2Z2, e1 + 2Z2, e2 + 2Z2 or e + 2Z2 .

The four (finite) matrices [γ−2k], [γe1−2k], [γe2−2k] and [γe−2k] are called
masks. They, too, represent the subdivision scheme.

Remark 2: A necessary condition for the convergence of a stationary subdi-
vision scheme is that each mask defines an affine combination, see 15.3. This
means that the weights of any mask must sum to one. To avoid fractions, it
is common, therefore, to represent a mask by some multiple of it. The proper
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208 15. Stationary subdivision for regular nets

mask is then obtained by dividing by the sum of all its weights. We will use
this convention in the sequel.

Remark 3: The four masks of the refinement operator M1 defined in 15.1,
are [

1 0
1 0

]
,

[
1 1
1 1

]
,

[
0 0
1 0

]
,

[
0 0
1 1

]
.

They are presented graphically on the left side of Figure 15.2. The right side
of Figure 15.2 shows the four masks

[
9 3
3 1

]
,

[
3 9
1 3

]
,

[
3 1
9 3

]
,

[
1 3
3 9

]

of the operator M2 = AM1 for biquadratic splines.

Figure 15.2: The four masks of the Lane-Riesenfeld algorithms M1 (left) and M2

(right).

Remark 4: The refinement operator M1 is described by four masks, whereas
the averaging operator A is described by a single mask only. Figures 15.3
and 15.4 show the masks for A and A2.

Figure 15.3: The mask of the averaging operator A (left) and its application
(right).
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15.4. Increasing averages 211

tions c(x) and d(x), respectively, where v ∈ Z2.

Then d(x) is the directional derivative of c(x) with respect to v.

For a proof, choose u ∈ Z2 be such that u and v are linearly independent.
Clearly, the control nets

[cm
ij ] = [cm

iu+jv]

converge to c(xu+yv) and the difference polygons 2m∇v[cm
ij ] to d(xu+yv).

So, without loss of generality, we can and do assume v = e2. Obviously the
piecewise constant splines

dm(x, y) :=
∑

i,j

2m∇vcm
ij N0

i (2mx)N0
j (2my)

and the splines

cm(x, y) :=
∫

dm(x, y)dy =
∑

i,j

cm
ij N0

i (2mx)N1
j (2my)

converge uniformly to d(x) and c(x), respectively. Hence, c(x, y) =∫
d(x, y)dy, which concludes the proof. 3

15.4 Increasing averages

In 15.3, divided differences of control nets are discussed. In contrast, we now
study averaged nets.

If the polygons Cm = [ci]i∈Z2 converge uniformly to a Riemann
integrable function c(x) with compact support, then the increasing
averages

am
ij =

1
4m

2m−1∑

k,l=0

cm
i−k,j−l

converge uniformly to the uniformly continuous function

a(x) =
∫

[0,1]2
c(x− t)dt .

For a proof, let Ω be the interval (i− [0, 1]2)/2m, which depends on i and m.
Since c(x) is Riemann integrable, the Riemann sums

rm
i = 4−m

2m−1∑

k,l=0

c((i−k, j−l)/2m)
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212 15. Stationary subdivision for regular nets

converge to a(i) uniformly for all i, as m goes to infinity.

Since the cm
i converge uniformly to c(x), the averages am

i converge uniformly
to the Riemann sums rm

i , which concludes the proof. 3

Similarly, one can prove the next result.

If the polygons Cm = [ci]i∈Z2 converge uniformly over any com-
pact set to a continuous function c(x), then the increasing line
averages

bm
i =

1
2m

2m−1∑

k=0

cm
i−kv , v ∈ Z2 ,

converge uniformly over any compact set to the uniformly contin-
uous function

b(x) =
∫ 1

0

c(x− tv)dt .

Remark 5: The averages am
i are line averages of line averages, since

am
i =

1
2m

2m−1∑

k=0

bm
i−ke1

, e1 = [1 0] ,

where

bm
i =

1
2m

2m−1∑

l=0

cm
i−le2

, e2 = [0 1] .

15.5 Computing the difference schemes

A stationary subdivision scheme can also be described by means of generating
functions. As in 8.8, we multiply the refinement equation by the monomial
xi = xiyj and sum over all i. This results in

∑

i

cm+1
i xi =

∑

i

∑

j

cm
j γi−2jx2jxi−2j

=
∑

j

cm
j x2j

∑

k

γkxk ,

which we abbreviate by

cm+1(x) = cm(x2)γ(x) .

prau
Hervorheben



15.5. Computing the difference schemes 213

The factor
γ(x) =

∑

k

γkxk

represents the subdivision scheme, and it is called its symbol or characteris-
tic polynomial. For a tensor product scheme, the characteristic polynomial
is the product of two univariate polynomials α(x) and β(y) representing two
curve schemes.

Any stationary curve scheme has an underlying difference scheme, but for
surface schemes this is not true in general. To study when a subdivision
scheme has a difference scheme, we identify control nets and subdivision
schemes with their generating polynomials.

Thus, given a control net

c(x) =
∑

cixi ,

its refinement under a stationary scheme γ(x) is given by

b(x) = c(x2)γ(x) ,

and the differences ∇vci = ci − ci−v,v ∈ Z2, form the polygon

∇vc(x) = c(x)(1− xv) .

Hence, the differences of the refined polygon b(x) = c(x2)γ(x) are given by

∇vb(x) = ∇vc(x2)γ(x)
1− xv

1− x2v
.

Thus, there exists a stationary scheme, the ∇v-difference scheme, mapping
∇vc onto ∇vb if and only if

δ(x) = γ(x)/(1 + xv)

is a polynomial. In case δ(x) is a polynomial, it is the characteristic poly-
nomial of the difference scheme.

Remark 6: Given a control net C = [ci], let ∇C be the control net whose
“vertices” are the matrices

∇ci = [∇e1ci ∇e2ci] .

If the control net B is obtained by application of a stationary subdivision
scheme from C, then ∇B is obtained from ∇C using a stationary scheme
whose weights are 2×2 matrices, see [Kobbelt ’00, Cavaretta et al. ’91, Thm.
2.3].
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214 15. Stationary subdivision for regular nets

Remark 7: The Lane-Riesenfeld schemeMn, see 15.1, has the characteristic
polynomial

γ(x, y) = 4−n(1 + x)n+1(1 + y)n+1 .

This follows directly from Remark 5 in 8.8.

15.6 Computing the averaging schemes

Using characteristic polynomials, it can be seen that for any stationary sub-
division scheme there exists a stationary scheme for the averages considered
in 15.4.

Let
cm(x) = γ(x)cm−1(x2)

represent a sequence of control nets [cm
i ] obtained under a stationary subdi-

vision scheme γ. Using the variables

xk := x2k

,

this sequence can be written as

cm(x) = γ(x0) . . . γ(xm−1)c0(xm) .

Further, for any v ∈ Z2, let the polynomial bm(x) =
∑

bm
i xi represent the

line averages

bm
i =

1
2m

2m−1∑

k=0

cm
i−kv .

With yk := xkv, this can be written as

bm(x) = 2−m(1 + y + y2 + y3 + · · · + y2m−1)cm(x)

= 2−m(1 + y)(1 + y2)(1 + y4) . . . (1 + y2m−1
)cm(x)

= β(x0) . . . β(xm−1)c0(x) ,

where
β(x) = γ(x)(1 + xv)/2

is the characteristic polynomial of the averaging scheme obtained from the
scheme γ.

This means that the scheme β is described by the following algorithm.
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15.7. Subdivision for triangular nets 215

Given control points bi, i ∈ Z2, and a vector v ∈ Z2

repeat

1 For all i, subdivide by the scheme γ, i.e.,
di :=

∑
j bjγi−2j .

2 For all i, compute the line averages
bi := 1

2 (di + di−v) .

Similarly, it follows that the averages

am
i =

1
4m

2m−1∑

k,l=0

cm
i−k,j−l

are obtained from the points a0
i = c0

i under the stationary scheme represented
by

α(x) = γ(x)(1 + x)(1 + y)/4.

This scheme is described by the following algorithm.

Given control points ai, i ∈ Z2

repeat
1 For all i, subdivide by the scheme γ, i.e.,

di :=
∑

j ajγi−2j .
2 For all i, compute the line averages

f i := 1
2 (di + di−e1) .

3 For all i, compute the line averages
ai := 1

2 (f i + f i−e2) .

15.7 Subdivision for triangular nets

Every regular quadrilateral net can be transformed into a regular triangular
net and vice versa by adding or deleting “diagonal” edges, as illustrated in
Figure 15.5. Thus, we can represent any regular triangular net by a biinfinite
matrix

C =




... . .
.

· · · cij · · ·
. .

. ...




whose entries are the vertices of the net.

In particular, the three vectors

e1 =
[

1
0

]
, e2 =

[
0
1

]
, e3 =

[ −1
−1

]
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15.7. Subdivision for triangular nets 217

represents a three direction averaging algorithm, and Cm = Bm
n (C) repre-

sents the sequence of triangular nets obtained from C under the averaging
algorithm Bn.

Remark 8: The doubling operator D is the Lane-Riesenfeld operator M0

given in Remark 7. Its characteristic polynomial is

δ(x, y) = (1 + x)(1 + y) .

Remark 9: In particular, B001 represents the refinement operator R
that subdivides all triangles of a regular net uniformly into four congruent
triangles, as illustrated in Figure 15.7. The figure also depicts the four masks
representing B001. The weights of these four masks form the coefficients of
the characteristic polynomial of B001, see 15.2. This polynomial is

γ(x, y) = (1 + x)(1 + y)(1 + xe3)/2

=
1
2

[
x−1 1 x

]



1 1 0
1 2 1
0 1 1







y−1

1
y


 .

Figure 15.7: The refinement operator R applied to a regular triangular net and
its four masks.

Remark 10: Any net obtained by successive application of the refinement
operator R to a regular triangular net C represents the same continuous
piecewise linear surface. Hence, a sequence of nets obtained under R con-
verges.

Remark 11: The symmetric averaging operator A111 = A1A2A3 is given by
a single mask. The mask has been introduced in [Boehm ’83] and is depicted
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in Figure 15.8. The polynomial representing A111 is

γ(x, y) =
1
8

[
1 x x2

]



0 1 1
1 2 1
1 1 0







1
y
y2


 .

Figure 15.8: Boehm’s mask of the symmetric averaging operator A111.

15.8 Box splines over triangular grids

Let Cm be a sequence of triangular nets obtained under repeated applications
of the averaging operator Bn. If Bn is the doubling operator, given by n =
(0, 0, 0), or refinement operator, given by n = (0, 0, 1), then Cm converges to
a piecewise constant or continuous piecewise linear spline, respectively.

In general, if

k := min{n1+n2, n1+n3−1, n2+n3−1} ≥ 0 ,

then, over every compact domain, Cm converges uniformly to a
Ck spline, which is polynomial of total degree |n| = n1 + n2 + n3

over each triangle of the grid spanned by e1, e2 and e3.

These splines are three-direction box splines, see Chapter 17.

For a proof, we apply repeatedly the results in 15.4 and 15.6 and take into
account the following fact. If f(x) is continuous, then the integral

∫ 1

0

∫ 1

0

∫ 1

0

f(x− ue1 − ve2 − we3)dudvdw

has continuous mixed partial derivatives with respect to any two distinct
directions ei and ej . Since ei = ej+ek for all permutations (i, j, k) of (1, 2, 3),
all second partial derivatives exist. Consequently, iterated integration with
respect to two different directions raises the smoothness order by one, but
iterated integration with respect to three directions raises it by two. 3
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226 16. Stationary subdivision for arbitrary nets

as the one illustrated in Figure 16.1. In this figure, the light edges form the
net C, the light and broken edges form the net RC and the bold edges form
the net ARC.

Figure 16.1: Refining and averaging a net.

We call the operatorMn = An−1R, which refines a net and averages it (n−1)
times successively, the midpoint operator and say that any sequence of nets
Mi

nC is obtained from C under the midpoint scheme Mn.

In particular, if C is a regular quadrilateral net, thenMn represents the Lane-
Riesenfeld algorithm for tensor product splines of bidegree n. Furthermore,
for arbitrary nets, M2 and M3 represent specific instances of the Doo-
Sabin [Doo et al. ’78] and Catmull-Clark algorithm [Catmull et al. ’78],
respectively. A sequence of nets obtained by application of M3 is shown in
Figure 16.2.

For odd and even n, the midpoint schemes Mn have dual properties. If
n is odd, all nets Mi

nC, i ≥ 1, are quadrilateral and if n is even, all nets
Mi

nC, i ≥ 1, have interior vertices of valence four only. Non-quadrilateral
meshes and interior vertices of valence different from four are called extra-
ordinary meshes and extraordinary vertices, respectively. In short, we
refer to both types using the term extraordinary elements.

Furthermore, every extraordinary element of a net Mi
nC is obtained by an

affine combination of a fixed number of vertices around a corresponding ex-
traordinary element of the preceding net Mi−1

n C. Since any extraordinary
element in a net Mi−1

n C corresponds to at most one extraordinary element
in Mi

nC, the number of extraordinary elements in any net Mi
nC is bounded

by the number of extraordinary elements in C. If C is a closed net, i.e., if C
has no boundary, then the number of extraordinary elements is the same for
all nets Mi

nC, i ≥ 0.

Remark 1: The distance between two extraordinary elements in some net
Mi

nC is the number of edges of a shortest path connecting the two elements.
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17 Box splines

17.1 Definition of box splines — 17.2 Box splines as shadows — 17.3 Properties

of box splines — 17.4 Derivatives of box splines — 17.5 Box spline surfaces —
17.6 Subdivision for box spline surfaces — 17.7 Convergence under subdivision

— 17.8 Half-box splines — 17.9 Half-box spline surfaces — 17.10 Problems

Box splines are density functions of the shadows of higher dimensional polyhe-
dra, namely boxes. For example, B-splines with equidistant knots are special
univariate box splines, and the surfaces obtained by the averaging algorithm
described in Section 15.7 are box spline surfaces over a regular triangular
grid. This chapter (an abbreviated version of [Prautzsch et al. ’02]) provides
a brief introduction to general box splines. It also covers half-box splines.
Symmetric half-box splines of degree 3n are more suitable for the construc-
tion of arbitrary G2n−1 free-form surfaces with triangular patches than box
splines.

17.1 Definition of box splines

An s-variate box spline B(x|v1 . . . vk) is determined by k directions vi in
IRs. For simplicity, we assume that k ≥ s and that v1, . . . ,vs are linearly in-
dependent. Under these assumptions, the box splines Bk(x) = B(x|v1 . . . vk),
k = s, s + 1, . . . , are defined by successive convolutions, similarly to the defi-
nition given in 8.1,

Bs(x) =
{

1/| det[v1 . . . vs]| if x ∈ [v1 . . . vs][0, 1)s

0 otherwise

Bk(x) =
∫ 1

0

Bk−1(x− tvk)dt, k > s .

prau
Hervorheben

prau
Hervorheben

prau
Hervorheben



242 17. Box splines

which corresponds, up to a constant factor, to the inductive definition of box
splines. Consequently, volk−sβk(x) is a multiple of the box spline Bk(x), and,
since ∫

IRs
volk−sβk(x) dx = volkβk and

∫

IRs
Bk(x)dx = 1 ,

equation (1) follows. 3

Figure 17.3: Measurements of the box βk.

Remark 1: From the geometric definition (1), it follows that a box spline
solves the functional equation

∫

IRs
B(x|v1 . . . vk)f(x)dx =

∫

[0,1)k

f([v1 . . . vk]t)dt

for all continuous test functions f(x).

17.3 Properties of box splines

From the geometric construction (1) of box splines, it follows that B(x) =
B(x|v1 . . . vk)

• does not depend on the ordering of the directions vi,

• is positive over the convex set [v1 . . .vk][0, 1)k,

• has the support suppB(x) = [v1 . . . vk][0, 1]k,

• is symmetric with respect to the center of its support.

Further, let B(x) be the shadow of a box β as in 17.2. The (s−1)-dimensional
faces of β projected into IRs form a tessellation of the support. It is illustrated
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246 17. Box splines

is linearly dependent if |det[v1 . . .vs]| 6= 1. Since the ordering of the vi does
not matter, this sequence is also linearly dependent if there is any independent
subsequence vi1 . . .vis with

|det[vi1 . . .vis ]| 6= 1 .

The converse is also true [?, ’85]. One can prove it, for example, by induction,
see [Jia ’83, ’85]. We leave it as an exercise. In summary, we have the
following theorem.

B(x−i|v1 . . .vk), i ∈ Zs, is linearly independent over each open
subset of IRs if and only if [v1 . . .vk] is unimodular,

which means that the determinant of any submatrix [vi1 . . .vis ] is 1, 0 or −1.

If the directions v1, . . . ,vk−1 span IRs, then we can compute the direc-
tional derivative Dvk

s of s with respect to vk. Using derivative formula
(3) from 17.3, we obtain

(5) Dvk
s(x) =

∑

i∈Zs

∇vk
ciB(x−i|v1 . . . vk−1) ,

where ∇vci = ci − ci−v. Further, if for all j = 1, . . . , k the k − 1 directions
v1, . . . ,v∗j , . . . ,vk span IRs, then B(x) is continuous, as shown in 17.3, and
the span of its shifts contains the linear polynomials. In particular, if

mi = i +
1
2
(v1 + · · · + vk)

is the center of suppB(x− i), then

(6)
∑

i∈Zs

miB(x− i) = x .

Namely, because of symmetry, this equation holds for x = mo, and for all
j = 1, . . . , s, we obtain

Dvj

∑
miB(x− i) = vj .

Since the box spline representation is affinely invariant, we obtain for any
linear polynomial l(x) that

l(x) =
∑

l(mi)B(x− i) .

This property is referred to as the linear precision of the box spline repre-
sentation, see also Problems 1 and 2.
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252 17. Box splines

Figure 17.6: The two piecewise cubic C1half-box splines.

The half-box splines are normalized such that
∫

IR2
H(x)dx = 1/2 .

Any k independent directions u1, . . . ,uk ∈ IRk define a half-box

ϑ = {
∑

uiαi|0 ≤ α1 ≤ α2 and α2, . . . , αk ∈ [0, 1]} .

The density of a shadow of this half-box represents a half-box spline: If π
denotes the orthogonal projection from IRk onto IR2 mapping u1, . . . ,uk to
e1, e2,v3, . . . ,vk, then

H(x|v3 . . . vk) =
1

2 volkϑ
volk−2(π−1x ∩ ϑ) .

From this geometric construction it follows that H(x)

• does not depend on the ordering of v3 . . . vk,

• is positive over the convex set ∆ + [v3 . . .vk](0, 1)k−2 ,

• has the support closure(∆) + [v3 . . .vk][0, 1]k−2 ,

• has the directional derivative

DvrH(x) = H(x|v3 . . . v∗r . . . vk)−H(x−vr|v3 . . . v∗r . . . vk)

with respect to vr, r ≥ 3 ,

• is r times continuously differentiable, provided that all subsets of
{v3, . . . ,vk} obtained by deleting r + 1 vectors vi span IR2,

• is polynomial of total degree ≤ k − 2 over each triangle i + ∆ and
i +∇, i ∈ Z2.
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254 17. Box splines

derivative formula given in 17.8 for a single half-box spline. It is given by

Dvr
s(x) =∑
i∈Zs

(∇vrc
∆
i H∆(x− i|v3 . . . v∗r . . .vk) +∇vrc

∇
i H∇(x− i|v3 . . . v∗r . . .vk)

)
,

where ∇vci = ci − ci−v .

If H∆(x) is continuous or, equivalently, if there exist two independent di-
rections among v3, . . . ,vk, then all directional derivatives of the sum of all
shifts,

∑
H∆(x − i), are zero. Therefore, this sum is a constant function.

Because of symmetry, and since the shifts of both half-box splines H∆ and
H∇ form a partition of unity, we obtain

(8)
∑

i∈Z2

H∆(x− i) =
∑

i∈Z2

H∇(x− i) = 1/2 .

In particular, this implies that the shifts of H∆ and H∇ are linearly de-
pendent.

Further, if the box spline

B(x) = B(x|e1e2v3 . . . vk) = H∆(x) + H∇(x)

is continuous, then we recall from (6) in 17.5 that
∑

i∈Z2

mi (H∆(x− i) + H∇(x− i)) = x ,

where mi is the center of suppB(x− i). If H∆ is continuous, we can use (8)
and obtain for any v ∈ IR2

∑

i∈Z2

((mi + v)H∆(x− i) + (mi − v)H∇(x− i)) = x .

For example, if v = (e2 − e1)/6, then the points m∆
i = mi + v and m∇

i =
mi − v form a regular hexagonal grid, as illustrated in Figure 17.8.

Since the half-box spline representation is affinely invariant, we obtain for
any linear polynomial l(x) the half-box spline representation

l(x) =
∑

i∈Z2

(
l(m∆

i )H∆(x− i) + l(m∇
i )H∇(x− i)

)
.

This property is referred to as the linear precision of the half-box spline
representation.
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Figure 17.8: The hexagonal grid of the “centers” m∆
i and m∇

i .

Remark 11: Any half-box spline surface

s(x) =
∑

i∈Z2

(
c∆
i H∆(x− i) + c∇i H∇(x− i)

)

has also a “finer” representation

s(x) =
∑

i∈Z2

(
d∆

i H∆(mx− i) + d∇i H∇(mx− i)
)

for any m ∈ IN. In particular, for m = 2k, k ∈ IN, the new control points d∆
i

and d∇i , which depend on m, can be computed by k repeated applications of
the subdivision algorithm 15.9. Similar to the subdivision algorithm for box
splines as described in Section 17.6, this algorithm has an obvious general-
ization that generates the points d∆

i and d∇i for any arbitrary m ∈ IN. We
leave it as an exercise to work out this generalization.

17.10 Problems

1 Let the directions v1, . . . ,vk ∈ Zs span IRs, and assume that the associ-
ated box spline B(x) = B(x|v1 . . . vk) is r times continuously differen-
tiable. Use the derivative formula (5) given in 17.5 to show, by induction
over k, that for any polynomial c(x) of total degree d ≤ r + 1 the spline

s(x) =
∑

i∈Zs

c(i)B(x− i)

is also a polynomial of degree d.
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18.5. A recurrence relation 265

18.5 A recurrence relation

If the new knot ak+1 coincides with x, then the knot insertion formula (1)
from 18.4 represents a simplex spline at x as an affine combination of simplex
splines with x as a knot, i.e.,

M(x|a0 . . . ak) =
k∑

i=0

ξiM(x|x a0 . . . a∗i . . . ak) ,

where x =
∑

ξiai and 1 =
∑

ξi.

This leads to a recursive formula since the simplex splines on the right are sim-
plex splines of lower degree. For example, let σ0 be the simplex p p1 . . . pk

in IRk with shadow
Mσ0(x) = M(x|x a1 . . .ak) ,

where πp, πp1, . . . , πpk are the knots x,a1, . . . ,ak. We assume that the “base
simplex” ρ with the vertices p1, . . . ,pk lies in a hyperplane orthogonal to the
fibers of the projection π.

Hence, if h denotes the Euclidean distance between p and ρ, we obtain

volkσ0 =
1
k

h · volk−1ρ

and
volk−s(σ0 ∩ π−1x) =

1
k − s

h · volk−s−1(ρ ∩ π−1x)

as illustrated in Figure 18.6 for k = 3 and s = 1.

Figure 18.6: Computing the volumes of σ0 and σ0 ∩ π−1x.

Dividing the second by the first equation, we obtain

M(x|x a1 . . . ak) =
k

k − s
M(x|a1 . . . ak) .
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266 18. Simplex splines

Hence, we can transform the knot insertion formula (1) into Micchelli’s
recurrence relation

(2) M(x|a0 . . . ak) =
k

k − s

k∑

i=0

ξiM(x|a0 . . . a∗i . . . ak) ,

which represents a simplex spline with k +1 knots as a linear combination of
simplex splines with k knots, see [Micchelli ’80]. Since the weights ξi depend
linearly on x, repeated application of this recurrence relation shows that

an s-variate simplex spline with k+1 knots is piecewise polynomial
of total degree ≤ k − s.

Remark 4: Comparing the recurrence relations for simplex splines and
Bernstein polynomials, see 10.1, we see that an s-variate simplex spline with
only s + 1 distinct knots is a Bernstein polynomial, i.e.,

M(x|a0
i0+1. . . a0 . . . as

is+1. . . as) =

(
k
s

)

vols∆
Bk−s
i (u) ,

where i = (i0 . . . is), k = i0+ · · · +is+s, ∆ denotes the simplex a0 . . . as and
u the barycentric coordinate column of x with respect to ∆, see Figure 18.7.

Figure 18.7: Quadratic Bernstein polynomials.

Remark 5: Repeated application of the recursion formula(2) also shows
that each polynomial segment of a multivariate B-spline can be written as a
product of k weights ξ, which represent x as certain affine combinations of
all or some knots ai. Since these weights depend continuously on the knots
ai (or on the vertices pi of some associated simplex), it follows that each
polynomial segment depends continuously on the knots ai.
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p1

p2

p3v

v

v

Figure 18.8: Triangulation of a prism.
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272 19. Multivariate splines

Figure 19.1: De Casteljau’s algorithm for a quadratic.

Figure 19.2: Seidel’s generalization of de Casteljau’s algorithm for a quadratic.

c[1̄2̄], c[2̄2] and c[2̄0̄], we compute the three points c[i x] and then compute
from these three points the point c(x) = c[xx].

To present the generalization of de Casteljau’s algorithm, let a0
i , . . . ,a

n−1
i

denote a sequence, also called chain or cloud of knots, for i = 0, . . . , s.
If these knots are in general position, then any s-variate polynomial surface
c(x) with polar form c[x1 . . .xn] is completely defined by its B-points

ci = c[a0
0 . . .ai0−1

0 . . .a0
s . . .ais−1

s ] ,

where i = [i0 . . . is] ∈ ∆n and

∆n = {i|i ∈ Zs+1, o ≤ i, i0 + · · ·+ is = n} .

Namely, c(x) can be computed by means of the recursion formula

cj = ξ0cj+e0 + · · ·+ ξscj+es j ∈ ∆ := ∆n−1 ∪ · · · ∪∆0 ,

where the ξk are the barycentric coordinates of x with respect to the simplex

Sj = [aj0
0 . . . ajs

s ]
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and ek denotes the kth unit vector in IRs+1 as before. This means that

cj = c[a0
0 . . .aj0−1

0 . . .a0
s . . .ajs−1

s x . . .x]

and that the knots are in general position if all simplices Sj are non-
degenerate.

Remark 1: If c(x) is quadratic, then its Bézier points bi over the simplex
So satisfy

bei+ej = cei+ej for all i 6= j ,

and bei+ei
lies in the plane spanned by the points cei+ej

, j = 0, . . . , s. An
example is shown in Figure 19.5.

19.2 B-polynomials and B-patches

We can apply the generalized de Casteljau algorithm from Section 19.1 to
any arbitrary net of control points ci, |i| ∈ ∆n. If we start with the control
points

ci =
{

1 if i = k
0 otherwise , i ∈ ∆n ,

then the resulting scalar valued polynomials Cn
k (x) form a basis for the space

of all nth degree polynomials. Namely, since the generalized de Casteljau
algorithm in 19.1 is linear in the control points, any polynomial c(x) of
degree ≤ n can be written as

c(x) =
∑

i∈∆n

ciCn
i (x) ,

where ci is defined as in 19.1. Further, the Cn
i are linearly independent since

their number
(
n+s

s

)
equals the dimension of the space of all polynomials of

total degree ≤ n.

The polynomials Cn
i are called the B-polynomials and the representation

of a polynomial as a linear combination of B-polynomials is referred to as
a B-patch representation. From their construction above, we obtain the
following properties, which are similar to the properties of Bernstein polyno-
mials, given in Section 10.1. The s-variate B-polynomials of degree n

• form a basis for all s-variate polynomials of total degree ≤ n,

• form a partition of unity, i.e.,
∑

i∈∆n

Cn
i (x) = 1 ,
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274 19. Multivariate splines

• are positive for all x in the interior of the intersection Γ of all sim-
plices Sj, |j| ≤ n− 1,

• and satisfy the recursion

Cni (x) =

s∑

k=0

ξkC
n−1i−ek

(x) ,

where ξk is the kth barycentric coordinate of x with respect to Si−ek
and

Cnj = 0 if j has a negative coordinate.

The intersection Γ of the simplices Sj, j ∈ ∆, is illustrated in Figure 19.3 for
n = 2 and s = 2. It can be empty, depending on the knot positions.

Figure 19.3: The region Γ over which all B-polynomials are positive for n = s = 2.

Since the B-polynomials form a partition of unity, any polynomial surface
c(x) is an affine combination of its B-points ci. Consequently, a B-patch
representation is affinely invariant. Furthermore, the patch c(x),x ∈ Γ, lies
in the convex hull of the B-points ci since the B-polynomials sum to one and
are non-negative over Γ.

Remark 2: If all knots of each knot chain are equal, i.e., So = Sj for allj, then the B-polynomials Cni are the Bernstein polynomials Bni over the
simplex So since both sets of polynomials satisfy the same recursion.

19.3 Linear precision

The linear polynomial x, which is the identity map on IRs, has a B-patch
representation of degree n with respect to the knots aj

i introduced in 19.1.
Since x has the polar form

x[x1 . . . xn] =
1

n
(x1 + · · · + xn) ,

its B-points are

xi :=
1

n
(a0

0 + · · · + ai0−1
0 + · · · + a0

s + · · · + ais−1
s ) ,
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276 19. Multivariate splines

Figure 19.5: A quadratic polynomial with its B-patch and Bézier ordinates.

denote the directional derivative of c with respect to ∆x at x. Furthermore,
let c[x1 . . . xn] be the symmetric polynomial of c(x). Then, the symmetric
polynomial of ċ(x) is given by

ċ[x2 . . . xn] = nc[∆x x2 . . . xn] ,

as explained in 11.6. Hence, the B-points of ċ(x) are given by

nċj = nc[∆x a0
0 . . .ai0−1

0 . . .a0
s . . .ais−1

s ] , j ∈ ∆n−1 .

Expressing ∆x with respect to Sj, i.e., writing ∆x as

∆x =
s∑

k=0

νka
jk

k , 0 =
s∑

k=0

νk ,

and using the fact that polar forms are multiaffine, we obtain for the control
points ċj of the derivative

ċj =
s∑

k=0

νkcj+ek
.

This result is illustrated in Figure 19.6 for s = n = 2.

Remark 4: Let xi be the B-points of the identity polynomial p(x) = x with
respect to the knots ai

k and view the B-net of c(x) as the collection of the
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19.5. Multivariate B-splines 277

Figure 19.6: The differences ċj.

linear patches

cj(x) :=
s∑

k=0

γkcj+ek
, j ∈ ∆n−1 ,

over the simplices xj+e0 . . . xj+es , where γ0, . . . , γs are the barycentric coor-
dinates of x with respect to xj+e0 . . . xj+es .

Since γ̇k = nνk, the directional derivative of cj(x) with respect to ∆x is nċj.
Hence,

the derivative of the B-net consists of the B-points of the deriva-
tive ċ(x).

This is illustrated in Figure 19.7 for a functional bivariate quadratic surface.

19.5 Multivariate B-splines

The B-polynomials Ci, i ∈ ∆n, are defined with respect to the knots

a0
0, . . . ,an−1

0 , . . . ,a0
s, . . . ,an−1

s .

Here, we add s + 1 knots an
0 , . . . , an

s and show that

the normalized simplex splines

Ni :=
vol Si

(n+s
s )

M(x|Ai) , i ∈ ∆n ,

with the knot sequences Ai = a0
0 . . . ai0

0 . . .a0
s . . .ais

s coincide with

prau
Bleistift

prau
Hervorheben



278 19. Multivariate splines

Figure 19.7: The directional derivative of a B-net for n = s = 2.

the B-polynomials Ci(x) for all

x ∈ Ω := interior (
⋂

j∈∆0∪···∪∆n

Sj) .

This result is due to [Dahmen et al. ’92].

The splines Ni are multivariate B-splines with properties similar to those of
univariate B-splines. In fact, for s = 1 the B-splines Ni(x) are the univariate
B-splines defined in 5.3.

Proof: From the definition of constant simplex splines in 18.1 and from the
recurrence formula (2) in 18.5 for simplex splines, we obtain for x ∈ IRs the
recurrence relation

N0
o (x) =

{
1 if x ∈ So
0 otherwise ,

Nj(x) =
s∑

k=0

vol Sj(
j+s

s

) j + s

s

σk
j vol Sk

j
σjvol Sj

M(x|Aj−ek
) , j := |j| ,

where Sk
j is obtained from Sj by replacing ajk

k by x. The orientations −1 or
+1 of the sequences Sj and Sk

j are denoted by σj and σk
j , respectively.
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Since both simplices Sj and Sj−ek
contain Ω, their orientations are equal and

the equation above is equivalent to

Nj(x) =
s∑

k=0

σk
j

σj−ek
vol Sj−ek

vol Sk
j Nj−ek

(x)

=
s∑

k=0

ξk
j−ek

Nj−ek
(x) ,(1)

where ξk
j−ek

is the kth barycentric coordinate of x with respect to Sj−ek
. To

have all terms well-defined, we define, for jk = 0,

ξk
j−ek

= σk
j volSk

j /σj , σj−ek
vol Sj−ek

= 1 and

Nj−ek
(x) =

1(
j+s−1

s

)M(x|Aj−ek
) .(2)

If jk = 0, then Nj−ek
is a simplex spline over the knot sequence Aj−ek

, which
does not contain any knot from the kth knot cloud a0

k . . . an
k . Its support

and Ω are disjoint, which we prove next.

The support of Nj−ek
is the convex hull of all knots in Aj−ek

. Hence, every
point in this support is a convex combination of some points a0, . . . ,a∗k, . . . ,as,
where ai lies in the convex hull of the first ji + 1 knots a0

i , . . . ,a
ji

i of the ith
knot chain.

We need to show that any such simplex a0 . . . a∗k . . . as does not intersect Ω.
Since Ω is contained in all simplices Sk, where o ≤ k ≤ j, it is also contained
in any simplex a0 a0

1 . . . a0
s. Applying this argument repeatedly, we find that

the open set Ω is contained in the interior of the simplex a0 . . . as, which
implies that Ω and the support of Nj−ek

are disjoint.

So, for all x in Ω, the recurrence formula of the B-splines Nj coincides with the
recurrence formula of the B-polynomials Cj. Hence, it follows that Ni(x) =
Ci(x) for all x ∈ Ω. 3

19.6 Linear combinations of B-splines

We have discussed multivariate B-splines over one complex of s + 1 knot
chains. However, the true value of these B-splines is that they define useful
spline spaces over the entire IRs partitioned into complexes of such knot
chains.

Let a0
k, k ∈ Z, be the vertices of a triangulation of IRs, and let K ⊂ Zs+1

represent the simplices

a0
k0

. . . a0
ks

, k = [k0 . . . ks] ∈ K ,
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282 19. Multivariate splines

and, consequently,
ξ0
kj = −ξ0

k̄j .

Since the control net is connected and Nkj = Nk̄j, see (2), we obtain, there-
fore,

ξ0
kjck,j+e0Nkj + ξ0

k̄jck̄,j+e0Nk̄j = 0 ,

which concludes the proof. 3

19.8 Derivatives of a spline

The recurrence relation (2) in 18.5 and the derivative formula (3) in 18.6
for simplex splines are similar. One obtains the derivative formula up to a
constant factor just by differentiating the weights in the recurrence formula
although one might expect further terms due to the product rule.

Because of this, we can transform the recurrence (1) in 19.5 for multivariate
splines to a derivative formula. Differentiating the barycentric coordinates ξ
in the proof of the recurrence formula in 19.7, we obtain that the directional
derivative with respect to a direction ∆x of a spline

s(x) =
∑

k∈K

∑

i
ckiNki(x)

of degree n = |i| with connected control net is given by

d

dt
s(x + t∆x)|t=0 = n

∑

k∈K

∑

j∈∆

ċkjNkj(x) ,

where

ċkj =
s∑

l=0

νlck,j+el

and ν0, . . . , νs are the barycentric coordinates of the direction ∆x with respect
to the simplex Skj, see also 19.4.

Remark 5: As already observed in 19.4, the directions ċkj are part of the
directional derivatives with respect to ∆x of the control nets ckj(x) of s(x)
over the simplices xk,j+e0 . . . xk,j+es .

19.9 The main theorem

We use the notation from 19.6 and assume that the first r knots a0
k, . . . ,ar−1

k

of every knot cluster coincide. Still, the simplices Sko form a triangulation
of IRs. We show that any Cn−r piecewise polynomial function over this
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triangulation is a linear combination of the B-splines Nki and relate its control
points to the polar forms of its polynomial segments.

Let s(x) be any (n−r) times differentiable spline which, over each simplex Sko,
is identical with some polynomial sk(x) of degree ≤ n. Then, the multivariate
version of the main theorem 5.5 is as follows [Seidel ’92].

The spline s(x) can be written as

(4) s(x) =
∑

k∈K

∑

i∈∆n

sk[Ak,i−e]Nki(x) ,

where sk[x1 . . . xn] is the polar form of sk.

We prove this by induction over n− r. If n− r = −1, then the B-splines Nki
are the Bernstein polynomials over Sko, see 19.5 and Remark 2 in 19.2. In this
case, identity (4) follows from the main theorem 11.2. Now let n− r ≥ 0 and
let Ds(x) be the directional derivative of s(x) with respect to some non-zero
vector ∆x and assume that

Ds(x) =
∑

k∈K

∑

j∈∆n−1

Dsk[Ak,j−e]Nkj(x) .

According to Section 11.6, the polar form of Dsk can be expressed by the
polar form of sk, i.e.,

Dsk[Ak,j−e] = nsk[∆x Ak,j−e]

= n

s∑

l=0

νlsk[Ak,j−e+el
] ,

where ν0, . . . , νs are the barycentric coordinates of ∆x with respect to Skj.

Because of Remark 7 in 11.7, the control points sk[Ak,i−e] form a connected
net. Hence, it follows from 19.8 that

D
∑

k

∑

i
sk[Ak,i−e]Nki = Ds .

Therefore, (4) is true up to some constant term. Since (4) holds over every
Ωk, see 19.4 and 19.5, this constant is zero, which concludes the proof. 3

In particular, it follows that the B-splines form a partition of unity, i.e.,
∑

k∈K

∑

i∈∆n

Nki = 1 .
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296 Index

bounding box, 12, 33
box spline, 218, 239

as shadow, 240
surface, 245

B-patch
net, 280
representation, 273

B-points, 272
B-polynomial, 273
B-spline, 60, 61, 278

as divided difference, 73
discrete, 79
recursion, 64, 68
recursion formula, 111

BsplineB-spline
basis, 68

butterfly algorithm, 222, 235

C
Ck joint

general, 189
do Carmo, 98
Carnicer, 178
de Casteljau, 26, 156

algorithm, 13, 132
for tensor product surfaces,

131
generalized, 159, 272

Catmull, 225
Catmull-Clark algorithm, 226
Cavaretta, 214
center of support, 246
centripetal parametrization, 52
Chaikin, 112
chain of knots, 272
chain rule

Gaakjoints, 192
connection matrix, 92

characteristic
function, 260
map, 232
matrix, 220
polynomial of

a subdivision scheme, 117,
213

the difference scheme, 213
chord length parametrization, 51
circle of curvature, 106
clamped cubic spline, 87
Clark, 225
closed surface, 174
cloud of knots, 272
Clough-Tocher interpolant, 172
Cohen, 79, 80, 82, 249
collocation matrix, 84
composite Bézier polygon, 37
connected net, 280
connection

functions, 179
matrix, 92, 99

arbitrary, 104
totally positive, 104

contact of order r, 91
continuous tangent plane, 139, 176
control

net, 280
point, 64, 65, 104, 105, 126,

245, 253
polygon, 100

convergence
theorem, 209

for Cr-subdivision, 117
under degree elevation, 39, 83,

165
under knot insertion, 80
under subdivision, 29, 160, 249

conversion
between Bézier and B-spline

representation, 72
to Bézier

representation, 20, 153
tensor product representa-

tion, 131, 166
to B-spline form, 69
to monomial form, 22, 131, 132,

153
to triangular Bézier represen-

tation, 167
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