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Preface

Computer-aided modeling techniques have been developed since the advent
of NC milling machines in the late 40’s. Since the early 60’s Bézier and B-
spline representations evolved as the major tool to handle curves and surfaces.
These representations are geometrically intuitive and meaningful and they
lead to constructive numerically robust algorithms.

It is the purpose of this book to provide a solid and unified derivation of
the various properties of Bézier and B-spline representations and to show the
beauty of the underlying rich mathematical structure. The book focuses on
the core concepts of Computer-aided Geometric Design (CAGD) with the
intent to provide a clear and illustrative presentation of the basic principles
as well as a treatment of advanced material, including multivariate splines,
some subdivision techniques and constructions of arbitrarily smooth free-form
surfaces.

In order to keep the book focused, many further CAGD methods are ex-
cluded. In particular, rational Bézier and B-spline techniques are not ad-
dressed since a rigorous treatment within the appropriate context of projec-
tive geometry would have been beyond the scope of this book.

The book grew out of several courses taught repeatedly at the graduate and
intermediate under-graduate levels by the authors at the Rensselaer Poly-
technic Institute, USA, the Universities of Braunschweig and Karlsruhe, Ger-
many, and the Universidad Central de Venezuela. These courses were taught
as part of the curricula in mathematics and computer sciences, and they were
regularly attended also by students from electrical and mechanical engineer-
ing, geophysics and other sciences.

For the careful proofreading of parts of the manuscript, we like to thank
Stefan Bischoff, Bernhard Garz, Georg Umlauf, Claudia Bangert and Norbert
Luscher. Especially, we thank Christoph Pennekamp and Natalie Spinner for
preparing the LaTeX file and Bernd Hamann for his critical, thorough and
final proofreading.
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2 Bézier representation

2.1 Bernstein polynomials — 2.2 Bézier representation — 2.3 The de Casteljau

algorithm — 2.4 Derivatives — 2.5 Singular parametrization — 2.6 A tetrahedral

algorithm — 2.7 Integration — 2.8 Conversion to Bézier representation —
2.9 Conversion to monomial form — 2.10 Problems

Every polynomial curve segment can be represented by its so-called Bézier
polygon. The curve and its Bézier polygon are closely related. They have
common end points and end tangents, the curve segment lies in the convex
hull of its Bézier polygon, etc. Furthermore, one of the fastest and numer-
ically most stable algorithm used to render a polynomial curve is based on
the Bézier representation.

2.1 Bernstein polynomials

Computing the binomial expansion

1 = (u + (1− u))n =
n∑

i=0

(
n

i

)
ui(1− u)n−i

leads to the Bernstein polynomials of degree n,

Bn
i (u) =

(
n

i

)
ui(1− u)n−i , i = 0, . . . , n ,

which are illustrated in Figure 2.1 for n = 4.

The following properties of the Bernstein polynomials of degree n are impor-
tant.

• They are linearly independent.

Namely, dividing
∑n

i=0 biu
i(1 − u)n−i = 0 by (1 − u)n, and setting s =

9
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Figure 2.1: The Bernstein polynomials of degree 4 over [0, 1].

u/(1− u), gives
∑n

i=0 bis
i = 0, which implies b0 = . . . = bn = 0.

• They are symmetric,

Bn
i (u) = Bn

n−i(1− u) .

• They have roots at 0 and 1 only,

Bn
i (0) = Bn

n−i(1) =
{

1
0 for

i = 0
i > 0 .

• They form a partition of unity,

n∑

i=0

Bn
i (u) = 1 , for all u ∈ IR .

• They are positive in (0, 1),

Bn
i (u) > 0 , for u ∈ (0, 1) .

• They satisfy the recursion formula

Bn+1
i (u) = uBn

i−1(u) + (1− u)Bn
i (u) ,

where Bn
−1 = Bn

n+1 = 0 and B0
0 = 1.

This recursion formula follows directly from the identity
(

n + 1
i

)
=

(
n

i− 1

)
+

(
n

i

)
.
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Remark 1: The computation of the Bernstein polynomials up to degree n
can be arranged in a triangular scheme, as shown below, where the recursion
is represented by the “key” on the right:

1 = B0
0 B1

0 B2
0 · · · Bn

0

B1
1 B2

1 · · · Bn
1

B2
2 · · · Bn

2

. . .
...

Bn
n

key

∗ ∗

∗
ZZ~-

u

1− u

2.2 Bézier representation

A dimension count shows that the n + 1 (linearly independent) Bernstein
polynomials Bn

i form a basis for all polynomials of degree ≤ n. Hence,
every polynomial curve b(u) of degree ≤ n has a unique nth degree Bézier
representation

b(u) =
n∑

i=0

ciB
n
i (u) .

Any affine parameter transformation

u = a(1− t) + bt , a 6= b ,

leaves the degree of the curve b unchanged. Consequently, b(u(t)) has also
an nth degree Bézier representation,

b(u(t)) =
n∑

i=0

biB
n
i (t) .

The coefficients bi are elements of IRd and are called Bézier points. They
are the vertices of the Bézier polygon of b(u) over the interval [a, b]. The
parameter t is called the local and u the global parameter of b, see Fig-
ure 2.2.

The properties of Bernstein polynomials summarized in 2.1 are passed on to
the Bézier representation of a curve.

• The symmetry of the Bernstein polynomials implies that

b(u) =
n∑

i=0

biB
n
i (t) =

n∑

i=0

bn−iB
n
i (s) ,
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Figure 2.2: A cubic curve segment with its Bézier polygon over [a, b].

where u = a(1− t) + bt = b(1− s) + as.

These two sums define the Bézier representations of b over [a, b] and
[b, a], respectively. Thus, by using the oriented intervals [a, b] and [b, a],
we can distinguish the two different parameter orientations of a polynomial
curve.

• For the end points of the curve segment b[a, b], one has

b(a) = b0 and b(b) = bn .

Since the Bernstein polynomials sum to one,

• any point b(u) is an affine combination of the Bézier points.

As a consequence,

• the Bézier representation is affinely invariant, i.e., given any affine
map Φ, the image curve Φ(b) has the Bézier points Φ(bi) over [a, b].

Since the Bernstein polynomials are non-negative on [0, 1],

• one has for every u ∈ [a, b] that b(u) is a convex combination of the
bi. Hence, the curve segment b[a, b] lies in the convex hull of its Bézier
points.

This is illustrated in Figure 2.3.

Remark 2: Using the convex hull property separately for each coordinate
function of the curve b(u), a bounding box is obtained for the curve segment
b[a, b],

b[a, b] ⊂ [
n

min
i=0

bi,
n

max
i=0

bi] , u ∈ [a, b] ,

as illustrated in Figure 2.4 for a planar curve.
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Figure 2.3: The convex hull of a Bézier polygon.

Figure 2.4: Bounding box.

2.3 The de Casteljau algorithm

A curve

b(u) =
n∑

i=0

b0
i B

n
i (t), with u = a(1− t) + bt,

can be evaluated easily by the so called de Casteljau algorithm [Casteljau ’59].
Repeatedly using the recurrence relation of the Bernstein polynomials and
collecting terms, one obtains

b(u) =
n∑

i=0

b0
i B

n
i (t) =

n−1∑

i=0

b1
i B

n−1
i (t) = · · · =

0∑

i=0

bn
i B0

i (t) = bn
0 ,

where
bk+1

i = (1− t)bk
i + tbk

i+1 .

Two examples are shown in Figure 2.5, with t = 0.4 on the left and t = 1.4
on the right side.

The intermediate points bk
i of the de Casteljau algorithm can be arranged in

a triangular array, where each element is computed according to the “key”



14 2. Bézier representation

Figure 2.5: The de Casteljau construction.

on the right:

b0
0

b0
1 b1

0

b0
2 b1

1 b2
0

...
. . .

b0
n b1

n−1 b2
n−2 · · · bn

0

key

∗ ∗

∗
ZZ~-

1−t

t

Remark 3: If t lies in [0, 1], then the de Casteljau algorithm consists only
of convex combinations, which accounts for the numerical stability of this
algorithm.

Remark 4: Horner’s scheme is a very effective method to evaluate a poly-
nomial in monomial form. It can also be used for a curve b(t) =

∑
biB

n
i (t)

in Bézier form. After writing b(t) as

b(t) = (1− t)n

(
n∑

i=0

bi

(
n

i

)(
t

1− t

)i
)

,

one first evaluates the sum in parentheses by Horner’s scheme for the value
t/(1− t) and then multiplies the result by (1− t)n.

This method fails, if t is close to 1. In this, case one can use the relationship

b(t) = tn

(
n∑

i=0

bn−i

(
n

i

)(
1− t

t

)i
)

.
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2.4 Derivatives

The derivative of a Bernstein polynomial of degree n is simple to compute.
From the definition of the Bernstein polynomials one gets

d

dt
Bn

i (t) = n(Bn−1
i−1 (t)−Bn−1

i (t)) for i = 0, . . . , n ,

where Bn−1
−1 = Bn−1

n = 0 as before. Thus, given a curve

b(u) =
n∑

i=0

biB
n
i (t) , t =

u− a

b− a
,

one obtains for its derivative b′(u)

d

du
b(u) =

n

b− a

n−1∑

i=0

∆biB
n−1
i (t) ,

where ∆bi = bi+1 − bi This is illustrated in Figure 2.6.

Figure 2.6: Bézier curve and its hodograph (1:3).

If the column b(u) is viewed as a point, then b′(u) is a vector. One obtains
a point again if b′(u) is added to a point. In particular, o + b′(u) is called
the (first) hodograph of b.

Applying the derivative formula above repeatedly, one obtains any rth deriva-
tive of b,

b(r)(u) =
n!

(n− r)!(b− a)r

n−r∑

i=0

∆rbiB
n−r
i (t) ,

where ∆rbi = ∆r−1bi+1 −∆r−1bi denotes the rth forward difference of
bi. As above one obtains the second and further hodographs.

Using the derivative formulas and the endpoint interpolation property of
Bézier curves, we obtain a result that was fundamental for Bézier’s first
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development.

The derivatives of b at t = 0 (or t = 1) up to order r depend only
on the first (or last) r + 1 Bézier points, and vice versa.

Geometrically, this means that, in general, the tangents of b at t = 0 and 1
are spanned by b0,b1 and bn−1, bn, respectively, and that the osculating
planes of b at t = 0 and 1 are spanned by b0,b1,b2 and bn−2,bn−1,bn,
respectively, and so forth. Figure 2.7 gives an illustration.

Figure 2.7: Tangents and osculating planes.

Remark 5: Viewing the Bézier polygon of a curve b(u) =
∑

biB
n
i (t), where

u = (1− t)a+ t b, as a piecewise linear function p(u) over [a, b], one gets that

the derivative p′(u) of the Bézier polygon consists of the Bézier
points of b′(u).

This is illustrated in Figure 2.8 for a functional curve.

Figure 2.8: The derivative of a Bézier polygon.
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2.5 Singular parametrization

Consider a polynomial curve

b(t) =
n∑

i=0

biB
n
i (t)

and its derivative

ḃ(t) = n

n−1∑

i=0

4biB
n−1
i (t) ,

where the dot indicates differentiation with respect to the parameter t.

If4b0 = o, then ḃ(t) is zero at t = 0. However, with the singular reparametri-
zation t =

√
s, one gets

d

ds
b(t(0)) = n · 4b1 .

Thus, if 4b0 = o and 4b1 6= o, then the curve b(t) has a tangent at t = 0
that is directed towards b2, as illustrated in Figure 2.9.

Figure 2.9: Singular parametrization.

Remark 6: If 4b0 = 4b1 = o and 4b2 6= o, then the tangent of b(t) at
t = 0 is directed towards b2, etc.

2.6 A tetrahedral algorithm

Computing differences and the affine combinations of de Casteljau’s algo-
rithm can be combined. Namely, the rth derivative of a curve

b(u) =
∑

b0
i B

n
i (t) , t =

u− a

b− a
,
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at any u can be computed with de Casteljau’s algorithm applied to multiples
of the differences ∆kbi. Since the computation of affine combinations of
affine combinations is commutative, i.e.,

∑
αi

∑
βj pij =

∑
βj

∑
αi pij ,

the forward difference operator ∆ commutes with the steps of de Casteljau’s
algorithm.

Hence, one can compute the rth derivative also by first computing n − r
steps of de Casteljau’s algorithm, then r differencing steps and, finally, a
multiplication by the factor n · · · (n− r + 1)/(b− a)r. Thus, it follows

b(r)(u) =
n · · · (n− r + 1)

(b− a)r
∆rbn−r

0 ,

In particular, this formula says that the tangent and osculating plane of b at u
are spanned by bn−1

0 ,bn−1
1 and bn−2

0 ,bn−2
1 ,bn−2

2 , respectively, as illustrated
in Figure 2.10 for a cubic.

Figure 2.10: Osculating plane and tangent and the de Casteljau scheme.

Computing the points ∆rbn−k
0 for all k by successive de Casteljau and dif-

ferencing steps, one also gets the intermediate points ∆kbj
i , i + j + k ≤ n.

All these points can be arranged conveniently in a tetrahedral array, as illus-
trated in Figure 2.11 for n = 2, where the key represents the recursion

c = a(1− t) + bt and d = b− a .

This is not the only possible way to compute the tetrahedral array. Elimi-
nating a or b, one obtains

c = b + d(t− 1) and c = a + dt ,

respectively.
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Figure 2.11: Tetrahedral algorithm.

When we use one of these rules, instead of the differencing step, it suffices to
compute only the points of the two triangular schemes given by the points
on the left and bottom (or right) side of the tetrahedron.

Remark 7: It should be noted that differencing is not a numerically stable
process, in general. Consequently, computing derivatives is not a numerically
stable process either.

2.7 Integration

The integral of a polynomial curve in Bézier representation

b(u) =
n∑

i=0

biB
n
i (t), t =

u− a

b− a
,

has the Bézier representation

c(u) =
∫

b(u)du =
n+1∑

i=0

ciB
n+1
i (t) ,

where

ci = ci−1 +
b− a

n + 1
bi−1

= c0 +
b− a

n + 1
(b0 + · · ·+ bi−1) , i = n + 1, . . . , 1 ,
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and c0 is an arbitrary integration constant. This is verified by differentiating
c(u).

As a consequence of the integration formula and the endpoint interpolation
property of the Bézier representation, one obtains

∫ b

a

b(u)du =
b− a

n + 1
(b0 + · · ·+ bn)

and, in particular, independently of i,
∫ 1

0

Bn
i (t)dt =

1
n + 1

.

2.8 Conversion to Bézier representation

Some older CAD data formats represent curves by monomials. Thus, data
conversion between different CAD systems is an application where it is nec-
essary to convert the monomial to the Bézier representation and vice versa.
Let

b(t) =
n∑

i=0

ai

(
n

i

)
ti

be a curve in monomial form with binomial factors as in the Bézier represen-
tation. Since

(
n

i

)
ti(1− t + t)n−i =

n−i∑

k=0

(
n

i

)(
n− i

n−i−k

)
ti+k(1− t)n−i−k

=
n−i∑

k=0

(
i + k

i

)
Bn

i+k

=
n∑

j=0

(
j

i

)
Bn

j ,

one obtains the conversion formula

b(t) =
n∑

j=0

bjB
n
j (t) ,

where

bj =
n∑

i=0

(
j

i

)
ai

and
(
j
i

)
= 0 for j < i.
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The formula for the conversion to monomial form can be derived similarly
by multiplying out the Bernstein polynomials, see Problem 4. In Section 2.9,
we present a different derivation of it.

Remark 8: If a2 = · · · = an = o and a1 6= o, then b(t) is a linear polynomial
represented over [0, 1] by the Bézier points

bj = a0 + ja1 ,

as illustrated in Figure 2.12.

Figure 2.12: Equidistant Bézier points on a line.

Remark 9: Conversely, if the n + 1 Bézier points bi lie equidistantly on a
line, then b(t) is a linear polynomial, which can be written as

b(t) = (1− t)b0 + tbn .

This property is referred to as the linear precision of the Bézier represen-
tation.

Remark 10: As a consequence of Remark 9, the functional curve

b(t) =
[

t
b(t)

]
, b(t) =

∑
biB

n
i (t) ,

has the Bézier points [i/n bi]t, as illustrated in Figure 2.13. The coefficients
bi are referred to as the Bézier ordinates of b(t), and i/n as the Bézier
abscissae.

Figure 2.13: Bézier representation of a functional curve.
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2.9 Conversion to monomial form

Given a polynomial curve in Bézier representation,

b(u) =
n∑

i=0

biB
n
i

(
u− a

b− a

)
,

one can obtain its monomial form simply by a Taylor expansion,

b(u) =
n∑

i=0

b(i)(a)
(u− a)i

i!

=
n∑

i=0

(
n

i

)
∆ib0

(u− a)i

(b− a)i
.

Since ∆ib0 =
∑i

k=0

(
i
k

)
(−1)i−kbk, see Problem 3, one can write this explic-

itly as

b(u) =
n∑

i=0

i∑

k=0

(−1)i−k

(
n

i

)(
i

k

)
bk ti .

Remark 11: Using the tetrahedral algorithm in 2.6, one can compute the
Taylor expansion at u,

b(u + h) =
n∑

i=0

1
(b− a)i

∆ibn−i
0

(
n

i

)
hi .

2.10 Problems

1 Show that the Bernstein polynomial Bn
i (t) has only one maximum in

[0, 1], namely at t = i/n.

2 The Bernstein operator B assigns to a function f on [0, 1] the polyno-
mial

B[f ] =
n∑

i=0

f(i/n)Bn
i (t) .

If f is a polynomial of degree m ≤ n, then B[f ] is also a polynomial of
degree m, see also Problem 2 in 3.13. Show that this is true.

3 Show that

∆ib0 =
i∑

k=0

(
i

k

)
(−1)i−kbk .
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4 Derive the conversion formula in 2.9 to monomial form by elementary
algebraic manipulations similar to what is done in 2.8.

5 Show that

n . . . (n− k) tk+1 =
n∑

i=0

i . . . (i− k)Bn
i (t) .

6 Show that a planar cubic b(t) has a cusp at t = 0, i.e., a point where
it changes its direction, if ḃ(0) = o and both coordinates of b̈(0) are
non-zero. (The dots indicate differentiation with respect to t.)

7 Show that a planar cubic b(t) =
∑3

i=0 biB
3
i (t) has a cusp if b3 lies on

the parabola p(t) = (b0 + b1 − b2)B2
0(t) + b1B

2
1(t) + b2B

2
2(t)

[Pottmann & DeRose ’91].

8 For which choices of b3 does the cubic b(t) have a loop?

9 Let
∑n

i=0 ai

(
n
i

)
ti =

∑n
i=0 biB

n
i (t). Then, in matrix notation, one obtains

[a0 . . . an] = [b0 . . . bn]∆ ,

where ∆ =
[
(−1)j−i

(
j
i

)]
and ∆−1 =

[(
i
j

)]
. The matrices ∆ and ∆−1 are

upper-triangular matrices.
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Splines are piecewise polynomial curves that are differentiable up to a pre-
scribed order. The simplest example is a piecewise linear C0 spline, i.e.,
a polygonal curve. Other examples are the piecewise cubic C1 splines, as
constructed in 4.5.

The name spline is derived from elastic beams, so-called splines, used by
draftsmen to lay out broad sweeping curves in ship design. Held in place
by a number of heavy weights, these physical splines assume a shape that
minimizes the strain energy. This property is approximately shared by the
mathematical cubic C2 splines.

5.1 Splines

A curve s(u) is called a spline of degree n with the knots a0, . . . , am, where
ai ≤ ai+1 and ai < ai+n+1 for all possible i, if

s(u) is n− r times differentiable at any r-fold knot1, and s(u) is
a polynomial of degree ≤ n over each knot interval [ai, ai+1], for
i = 0, . . . , m− 1.

It is also common to refer to a spline of degree n as a spline of order n+1.
Figures 5.1 and 5.2 show examples of splines with simple knots obtained by

1A knot ai+1 is called r-fold if ai < ai+1 = · · · = ai+r < ai+r+1.

59
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Stärk’s construction, see Figures 3.8 and 3.9. The inner and end Bézier points
are marked by hollow and solid dots, respectively.

Figure 5.1: Spline functions of degree 1, 2 and 3.

5.2 B-splines

As with the Bézier representation of polynomial curves, it is desirable to write
a spline s(u) as an affine combination of some control points ci, namely

s(u) =
∑

ciN
n
i (u) ,

where the Nn
i (u) are basis spline functions with minimal support and certain

continuity properties. Schoenberg introduced the name B-splines for these
functions [Schoenberg ’67]. Their Bézier polygons can be constructed by
Stärk’s theorem.

Figure 5.3 shows a piecewise cubic C2 B-spline. Stärk’s theorem is only
needed for the Bézier ordinates, while the abscissae are given by Remark 8
in 2.3.
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Figure 5.2: Parametric splines of degree 1, 2, and 3.

For higher degree this construction, albeit possible, becomes much less ob-
vious and more complicated, see [Prautzsch ’89]. Therefore, we use a re-
currence relation, which was found independently by de Boor and Mansfield
[de Boor ’72] in 1970 and Cox [Cox ’72] in 1971. We define B-splines from
that relation and derive all important properties from that relation.

5.3 A recursive definition of B-splines

To define B-splines, let (ai) be a, for simplicity, biinfinite and strictly in-
creasing sequence of knots, which means ai < ai+1, for all i. We define the
B-splines Nn

i with these knots by the recursion formula

N0
i (u) =

{
1 if u ∈ [ai, ai+1)
0 otherwise

and
Nn

i (u) = αn−1
i Nn−1

i (u) + (1− αn−1
i+1 )Nn−1

i+1 (u) ,
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Figure 5.3: Bézier points of the B-spline N3
0 (u).

where
αn−1

i = (u− ai)/(ai+n − ai)

is the local parameter with respect to the support of Nn−1
i . Figure 5.4 shows

B-splines of degree 0, 1 and 2.

Figure 5.4: B-splines of degree 0, 1 and 2.

In case of multiple knots, the B-splines Nn
i (u) are defined by the same recur-

sion formula and the convention

Nr−1
i = Nr−1

i /(ai+r − ai) = 0 if ai = ai+r .

Figure 5.5 shows B-splines with multiple knots.

From the definition above, the following properties of B-splines are evident.

• Nn
i (u) is piecewise polynomial of degree n,

• Nn
i (u) is positive in (ai, ai+n+1),

• Nn
i (u) is zero outside of [ai, ai+n+1],
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Figure 5.5: Some B-splines with multiple knots.

• Nn
i (u) is right side continuous.

In Sections 5.5 and 5.6, we will see that the B-splines are n − r times dif-
ferentiable at r-fold knots, and that every spline is a unique combination of
B-splines.

Remark 1: If, in particular, a1 = . . . = an = 0 and an+1 = . . . = a2n = 1,
then the above recursion formula for Nn

0 , . . . , Nn
n and u ∈ [0, 1) coincides

with the recursion formula of the Bernstein polynomials. Hence, we have

Nn
i (u) = Bn

i (u) for i = 0, . . . , n and u ∈ [0, 1) .

5.4 The de Boor algorithm

Consider a linear combination

s(u) =
∑

i

c0
i N

n
i (u)

of the nth degree B-splines over some knot sequence (ai). Since any finite sum
can be converted to a formally biinfinite sum by adjunction of zero terms,
we assume, without loss of generality, that the knot sequence and, hence, the
sum above are biinfinite. Since the Nn

i (u) have local supports, this sum is
actually finite for any given u. In particular, let u ∈ [an, an+1), then s(u)
can be written as

s(u) =
n∑

i=0

c0
i N

n
i (u) .
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Using the B-spline recursion repeatedly and collecting terms, one obtains

s(u) =
n∑

i=1

c1
i N

n−1
i (u)

...

=
n∑

i=n

cn
i N0

i (u) = cn
n ,

where the cr
i are given by the affine combinations

cr
i = (1− α)cr−1

i−1 + α cr−1
i , α = αn−r

i =
u− ai

ai+n+1−r − ai
.

Note that α ∈ [0, 1] since u ∈ [an, an+1), i.e., the affine combinations are
actually convex.

This algorithm was developed by de Boor in 1972 [de Boor ’72]. The points
cr

i are conveniently arranged in a triangular array, as illustrated below, where
the recursion formula is represented by the key on the right,

c0
0

c0
1 c1

1

c0
2 c1

2 c2
2...

. . .
c0

n c1
n c2

n · · · cn
n

key

∗ ∗

∗
ZZ~-

1−α

α

(α depending on key position)

An important consequence of de Boor’s algorithm is that the spline s(u)
over each knot interval is an affine and actually convex combination of n + 1
consecutive coefficients ci. Hence, if the ci represent points of some affine
space, then s(u) is also a point. For this reason, we refer to the ci as the
control points of s(u).

Further, the spline lies in the affine hull of its control points, which implies
that

n∑

i=0

1 ·Nn
i (u) = 1 for u ∈ [an, an+1) ,

i.e., the B-splines form a partition of unity. Figure 5.6 illustrates the ge-
ometric interpretation of de Boor’s algorithm, which was first given in
[Gordon & Riesenfeld ’74].

Remark 2: For arbitrary u ∈ IR, de Boor’s algorithm applied, as described
above, to c0

0, . . . , c
0
n does not compute s(u) in general, but the polynomial

sn(u) that agrees with s(u) over [an, an+1).
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Figure 5.6: The convex combinations of de Boor’s algorithm for n = 3.

5.5 The main theorem in its general form

Symmetric polynomials will help to see de Boor’s algorithm in a wider con-
text. As before, let

s(u) =
∑

i

ciN
n
i (u)

be an nth degree spline with knots ai, and let si[u1 . . . un] be the polar
form that agrees on its diagonal with s(u) over [ai, ai+1). Then we have the
following general form of the main theorem 3.2.

As illustrated in Figure 5.7, the control points of s are given by

ci = sj [ai+1 . . . ai+n] , i = j − n, . . . , j .

For a proof, let
pr

i = sj [ai+1 . . . ai+n−r u r. . . u]

and
u = (1− α)ai + αai+n−r+1 .



66 5. B-spline representation

Figure 5.7: The main theorem for a cubic spline.

Then, since sj is multiaffine and symmetric, it follows that

pr
i = (1− α)pr−1

i−1 + αpr−1
i , α = αn−r

i =
u− ai

ai+n−r+1 − ai
,

and, in particular,

p0
i = sj [ai+1 . . . ai+n] and pn

j = sj(u) .

For u ∈ [aj , aj+1), this construction agrees with de Boor’s algorithm and can
be used to compute any polynomial sj [u . . . u] of degree n. Hence, every
polynomial of degree n can be written over [aj , aj+1) as a linear combination
of the B-splines Nn

j−n(u), . . . , Nn
j (u). A dimension count shows that this

linear combination is unique whence the assertion follows. 3

Remark 3: In the proof, we showed that, over [an, an+1], the B-splines
Nn

0 (u), . . . , Nn
n (u) form a basis for the space of all polynomial up to degree

n. This result is due to [Curry & Schoenberg ’66].

Remark 4: The spline “segment” si determines the control points
ci−n, . . . , ci. Conversely, every point cj is determined by any “segment”
sj , . . . , sj+n, i.e.,

ci = si[ai+1 . . . ai+n] = · · · = si+n[ai+1 . . . ai+n] .

Remark 5: The proof above shows that the symmetric polynomial
sn[u1 . . . un] can be computed by a generalization of de Boor’s algorithm.
All one has to do, is to replace α = α(u) in the recursion formula by

α(ur) =
ur − ai

ai+n−r+1 − ai
.
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If m of the n variables u1, . . . , un are knots, then only n−m recursion steps
are needed to compute sj [u1 . . . un]. The computation can be arranged in a
triangular array consisting of 1 + 2 + · · ·+ (n−m + 1) points.

5.6 Derivatives and smoothness

Because of the basis property of B-splines, see Remark 3, the derivative of
the polynomial spline segment sn can be written as

s′n(u) =
n∑

i=1

diN
n−1
i (u) , u ∈ [an, an+1) ,

where the unknown vectors di can easily be expressed in terms of the ci.
Let s′n[u2 . . . un] be the symmetric polynomial of s′n(u), and let the direction
∆ = ai+n − ai be given by the support of the B-spline Nn−1

i (u). Then, it
follows from the main theorem and 3.9 that

di = s′n[ai+1 . . . ai+n−1]

=
n

∆
sn[∆ ai+1 . . . ai+n−1]

=
n

ai+n − ai
(ci − ci−1) .

Since the di do not depend on the knot interval [an, an+1), the derivative of
the spline s can be written for all u ∈ IR as

(1) s′(u) =
∑

i

n

ai+n − ai
∇ciN

n−1
i (u) ,

where ∇ci = ci − ci−1 denotes the first backward difference.

One can differentiate further so as to obtain the B-spline representation of
higher derivatives. This is also useful in showing that the B-splines have the
desired smoothness properties:

An nth degree spline s is continuous at any n-fold knot. Namely if a0 < a1 =
· · · = an < an+1, then it follows from Remark 4 in 5.5 that

s0(a1) = s0[a1 . . . an] = c0

= sn[a1 . . . an]
= sn(an) .

Thus, if ai is an r-fold knot, then the (n− r)th derivative of s is continuous
at ai. In other words,

a B-spline satisfies the smoothness criteria of a spline given in 5.1.
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5.7 B-spline properties

We summarize the basic properties of B-splines.

• The B-splines of degree n with a given knot sequence that do not vanish
over some knot interval are linearly independent over this interval.

• A dimension count shows that the B-splines Nn
0 , . . . , Nn

m with the knots
a0, . . . , am+n+1 form a basis for all splines of degree n with support
[a0, am+n+1] and the same knots.

• Similarly, the B-splines Nn
0 , . . . , Nn

m over the knots a0, . . . , am+n+1 re-
stricted to the interval [an, am+1) form a basis for all splines of degree
n restricted to the same interval.

• The B-splines of degree n form a partition of unity, i.e.,

m∑

i=0

Nn
i (u) = 1, for u ∈ [an, am+1) .

• A spline s[an, am+1] of degree n with n-fold end knots,

(a0 =)a1 = . . . = an and am+1 = . . . = am+n(= am+n+1)

has the same end points and end tangents as its control polygon.

• The end knots a0 and am+n+1 have no influence on Nn
0 and Nn

m

over the interval [an, am+1].

• The B-splines are positive over the interior of their support,

Nn
i (u) > 0 for u ∈ (ai, ai+n+1) .

• The B-splines have compact support,

suppNn
i = [ai, ai+n+1] .

• The B-splines satisfy the de Boor, Mansfield, Cox recursion for-
mula

Nn
i (u) = αn−1

i Nn−1
i (u) + (1− αn−1

i+1 )Nn−1
i+1 (u) ,

where αn−1
i = (u− ai)/(ai+n − ai) represents the local parameter over

the support of Nn−1
i .

• The derivative of a single B-spline is given by

d

du
Nn

i (u) =
n

ui+n − ui
Nn−1

i (u)− n

ui+n+1 − ui+1
Nn−1

i+1 (u) .
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• The B-spline representation of a spline curve is invariant under affine
maps.

• Any segment sj [aj , aj+1) of an nth degree spline lies in the convex
hull of its n + 1 control points cj−n, . . . , cj .

• A degree elevation formula is given in 6.5.

5.8 Conversion to B-spline form

Since any polynomial of degree n can be viewed as a spline of degree n or
higher with an arbitrary sequence of knots, one can express the monomials
as linear combinations of B-splines over any knot sequence (ai). To do so,
recall from 3.1 that the monomials An

j (u) =
(
n
j

)
uj have the polar forms

An
j [u1 . . . un] =

∑

i< ... <k

ui
j. . . uk .

Thus, it follows from the main theorem 5.5 that

An
j (u) =

∑

i

αjiN
n
i (u) ,

where αji = An
j [ai+1 . . . ai+n], and, consequently,

a(u) = a0A
n
0 (u) + · · · + anAn

n(u)

=
∑

i

(a0α0i + · · · anαni)Nn
i (u) ,

which generalizes Marsden’s identity given in Problem 4 below. In particular,
one obtains

u =
1
n

An
1 (u)

=
∑

i

γiN
n
i (u) ,

where γi = α1i/n = (ai+1 + · · · +ai+n)/n. The γi are the so-called Greville
abscissae [Greville ’67].

Remark 6: The Greville abscissae show up naturally in the control points
of the graph of a spline function

s(u) =
∑

i

ciN
n
i .

Namely, the graph s(u) = [u s(u)]t has the control points ci = [γi ci]t. Fig-
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ure 5.8 shows the example s(u) = N3
2 (u). Other examples are shown in

Figure 5.1.

Figure 5.8: Control points of the cubic B-spline N3
2 (u).

5.9 The complete de Boor algorithm

The Taylor expansion of a polynomial spline segment

sn(u) =
n∑

i=0

ciN
n
i (u) , u ∈ [an, an+1) ,

can be computed at any u ∈ IR following the ideas presented in 2.6 for Bézier
curves.

Let sn[u1 . . . un] be the polar form of sn and consider the points and vectors

cr,i,k = sn[ε r. . . ε ai . . . ai+n−r−k u k. . . u],

where ε denotes the direction 1− 0, for i = r + k, . . . , n. It follows that

dr

dur
sn(u) =

n!
(n− r)!

cr,n,n−r ,

and the Taylor expansion is given by

sn(u + h) =
n∑

r=0

cr,n,n−r

(
n

r

)
hr .

The points and vectors crik can again be arranged conveniently in a tetrahe-
dral array, see Figure 5.9, where n = 2 and ε4 stands for sn[ε a4], etc.

This array, first considered by Sablonniere in 1978 [Sablonniere ’78], is com-
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Figure 5.9: The complete de Boor algorithm.

posed of
(
n+2

3

)
subtetrahedra and contains the given control points ci = c0,i,0

on the “left” edge and the multiples

(n− r)!
n!

s(r)
n (u)

of the derivatives on the opposite edge.

Any two of the four points of a subtetrahedron can be computed from the
two other points. The computation rules follow directly from the properties
of multiaffine symmetric polynomials. For example, one has

cr+1,i,k =
1

ai+n−r−k − ai
(cr,i,k − cr,i−1,k)

on the “left” face,

cr,i,k+1 = (1− α)cr,i−1,k + α cr,i,k , α =
u− ai

ai+n−r−k − ai
,

on the “rear” face,

(2) cr,i,k = cr,i,k+1 + (ai+n−r−k − u)cr+1,i,k ,

on the “bottom” face, and

(3) cr,i−1,k = cr,i,k+1 + (ai − u)cr+1,i,k

on the “top” face.

Remark 7: One can use the above formulae to convert a B-spline represen-
tation to monomial representation and vice versa.
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Remark 8: In order to obtain the derivatives from the control points or vice
versa, it suffices to compute, for example, only the left and top faces of the
tetrahedral array, see [Lee ’82, Boehm ’84b].

Remark 9: If one first computes the rear face and then the bottom (or top)
face of the tetrahedral array, one needs to solve formula (2) above (or (3)) for
cr+1,i,k (or cr,i−1,k). This is impossible if u = ai+n−r−k (or u = ai). Hence,
the derivatives of the polynomial sn cannot be computed in this fashion for
u = an+1, . . . , a2n (or u = a0, . . . , an−1).

5.10 Conversions between
Bézier and B-spline representations

There is also a tetrahedral algorithm to convert a B-spline representation
into a Bézier representation and vice versa [Boehm ’77, Sablonniere ’78]. It
can be derived similarly as the algorithm in 5.9. Let the notations be as in
5.9 and let

qrik = sn[a r. . . a ai+1 . . . ai+n−r−k b k. . . b]

for i = r + k, . . . , n. Thus, the control points of the spline are given by

ci = q0i0 ,

and the Bézier points of the polynomial sn over [a, b] are given by

bj = qn−j,n,j .

Again, the points qrik are conveniently arranged in a tetrahedral array, as
illustrated below in Figure 5.10 for n = 2, where a3, ab, etc. stand for
q120, q101, etc.

The left face is computed according to the rule

qr+1,i,k = (1− α)qr,i−1,k + αqr,i,k , α =
a− ai

ai+n−r−k − ai
,

and the bottom face according to the rule

qr,i,k+1 = (1− γ)qr+1,i,k + γ qr,i,k , γ =
b− a

ai+n−r−k − a
.

Conversely, one can compute the B-spline control points from the Bézier
points. First, one solves the two formulae above for qr,i−1,k and qrik. Second,
one applies the formulae to compute the bottom and then the left face.
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Figure 5.10: Conversion between Bézier and B-spline representations.

5.11 B-splines as divided differences

The standard definition of B-splines uses divided differences, and the calculus
of divided differences has been heavily used in developing the univariate spline
theory [de Boor ’78]. In particular, divided differences were used by de Boor,
Cox, and Mansfield to derive the recurrence relation.

Using the derivative formula (1) in 5.6, we show that B-splines are divided
differences of the truncated power function

f(a) = (a− u)n
+ :=

{
(a− u)n if a > u

0 otherwise ,

shown in Figure 5.11. Note that f is a function of a while u is some fixed
parameter.

Figure 5.11: A truncated power function.

With the divided differences given in 4.3, one obtains that
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the B-spline Nn
0 with the knots a0, . . . , an+1 can be written as

Nn
0 (u) = (an+1 − a0)[a0 . . . an+1](a− u)n

+ .

One can prove this fact by induction over n. For n = 0, the identity is easily
checked. For the induction step from n − 1 to n, we recall from 4.3 that
[a0 . . . an+1]f(a) is the leading coefficient of the (n+1)th degree polynomial
interpolating f(a) at a0, . . . , an+1. Hence, one can substitute f(a) by the
monomial (a − u)n of degree n in a if u < a0 and by the zero function if
u ≥ an+1. This shows that the identity above holds for u < a0 and u ≥ an+1.

Thus, it suffices to show that the derivative of the claimed identity holds.
Note that the divided difference is a linear combination of possibly differen-
tiated power functions. Hence, the divided difference is differentiable in u,
except at an (n+1)-fold knot. This causes no problem since there is at most
one (n + 1)-fold knot.

Using the recursive definition of divided differences, the induction hypothesis
and the derivative formula for B-splines, we obtain

d

du
(an+1 − a0)[a0 . . . an+1](a− u)n

+

= −n(an+1 − a0)[a0 . . . an+1](a− u)n−1
+

= n([a0 . . . an](a− u)n−1
+ − [a1 . . . an+1](a− u)n−1

+ )

=
n

an − a0
Nn−1

0 − n

an+1 − a1
Nn−1

1

=
d

du
Nn

0 (u) ,

which proves the assertion. 3

5.12 Problems

1 Consider a cubic C2 spline s(u) with the single knots a0, . . . , am. Show
that every C2 function f(u) 6= s(u) which interpolates s at all knots and
also the derivative of s(u) at u = a0 and am has greater strain energy
than s, i.e., ∫ am

a0

|f ′′(u)|2du >

∫ am

a0

|s′′(u)|2du .

For a solution, we refer to literature in numerical analysis, for example,
[Boehm & Prautzsch ’93, pp. 125 f].

2 Given a spline s(u) =
∑m

i=0 ciN
n
i (u) with the knots a0, . . . , am+n+1, show
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that ∫ am+n+1

a0

s(u)du =
m∑

i=0

ai+n+1 − ai

n + 1
ci .

3 Sketch the cubic B-splines with the knots 0, 0, 0, 0, 1; 0, 0, 0, 1, 2;
0, 0, 1, 2, 3 and 0, 1, 2, 3, 4 with their Bézier polygons. Compute the
values of their Bézier ordinates.

4 Use symmetric polynomials to prove Marsden’s identity

(u− a)n =
∑

i

(ai+1 − a) . . . (ai+n − a)Nn
i (u) .

5 Use the derivative formula of B-splines to derive the recursion formula of
de Boor, Mansfield and Cox by induction.

6 Use Leibniz’s identity for the product f = gh of two functions, i.e.,

[ai . . . ai+k]f =
i+k∑

r=i

([ai . . . ar]g)([ar . . . ai+k]h) ,

to derive[de Boor ’72] the recursion formula of de Boor, Mansfield and
Cox, see also [de Boor ’72].

7 Let s(u) =
∑3

i=0 ciN
3
i with the knots 0, 1, 2, . . . , 7 be given by c0, . . . , c3 =

4, 7,−2, 1.

a) Sketch s[3, 4] with its control polygon.

b) Compute s, s′, s′′ and s′′′ at u = 3.

c) Compute the monomial representation of s(u) over [3, 4].

d) Compute the Bézier representation of s(u) over [3, 4].

8 Show that if a multiaffine symmetric polynomial can be computed from
n + 1 points p[ai,1 . . . ai,n], i = 0, . . . , n, by affine combinations as in
de Boor’s algorithm, then there are real numbers a1, . . . , a2n such that
ai,j = ai+j .





13 Constructing smooth surfaces

13.1 The general C1 joint — 13.2 The vertex enclosure problem — 13.3 The

parity phenomenon — 13.4 Joining two triangular cubic patches — 13.5 Piper’s

G1 interpolant — 13.6 Notes and Problems

The simple C1 joint discussed in 11.7 is too restrictive for modelling smooth
regular surfaces of arbitrary shape. Here, we present general C1-conditions
and a interpolation scheme that allows to design regular surfaces of arbitrary
topology with triangular patches.

13.1 The general C1 joint

Let p(x, y) and q(x, y) be two regular C1 surface patches with a common
boundary at x = 0, i.e.,

p(0, y) = q(0, y)

for all y ∈ [0, 1]. Figure 13.1 gives an illustration. The patches p and q
neither need to be polynomial, nor three- or four-sided.

Figure 13.1: Two patches with a common boundary curve.
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One says that p and q have a general C1 or geometric C1- or, in short,
G1 joint in x = 0 if they have equal normals along this parameter line, i.e.,
if

px × py

‖px × py‖
=

qx × qy

‖qx × qy‖
for x = 0 .

Equivalently, one can characterize G1-continuity by requiring that there are
connection functions λ(y), µ(y) and ν(y) such that for x = 0 and all y

(1) λpx = µqx + νqy and λµ < 0 ,

except for isolated zeros.

In particular, if p and q have a G1 joint and are polynomials,
then the connection functions are also polynomials, and, up to a
common factor, we have

degree λ ≤ degree qx(0, y) + degree qy(0, y) ,
degree µ ≤ degree px(0, y) + degree qy(0, y) ,
degree ν ≤ degree px(0, y) + degree qx(0, y) .

For a proof, we compute the vector product of equation (1) with qx and qy.
This gives

λpx × qx = νqy × qx , and
λpx × qy = µqx × qy .

Recall that q is regular. Hence, at least one coordinate, say the first of
[qx × qy], denoted by [qx × qy]1, is non-zero. Since equation (1) can be
multiplied by a factor, we may assume that

λ = [qx × qy]1 .

This implies
µ = [px × qy]1 and ν = −[px × qx]1 ,

which proves the assertion. 3

Remark 1: Often, one sets λ = 1. Then µ and ν are rational, in general.

Remark 2: The proof given above also holds for rational polynomials p and
q. Then, the functions λ, µ and ν are rational up to a common factor with
the same degree estimates as above.

Remark 3: Any G1 joint is a simple C1 joint after a suitable parame-
ter transformation. Namely, if p and q satisfy the G1-condition (1), then
a(x, y) = p(λx, y) and b(x, y) = q(µx, νx + y) have a simple C1 joint, see
9.7 and 11.7.
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Remark 4: Whether two patches have a G1 joint does not depend on
their parametrization. However, the connection functions do depend on the
parametrization. The maximum degree of the connection function is invari-
ant under affine reparametrization.

13.2 Joining two triangular cubic patches

Consider two triangular cubic patches

p(u) =
∑

piB
3
i (u) and q(u) =

∑
qiB

3
i (u) ,

where 0 ≤ i = (i, j, k) and |i| = i + j + k = 3 and pi = qi for i = 0 such
that p and q join continuously at n = 0 and have common tangent planes
at e1 = (0, 1, 0) and e2 = (0, 0, 1). This configuration is illustrated in Figure
13.2. The shaded quadrilaterals are planar but not necessarily affine.

Figure 13.2: Moving interior Bézier points so as to achieve a G1 joint.

In general, we can move both interior points p111 and q111 so that
p and q join G1-continuously along u = 0.

In particular, we show how to obtain such a smooth joint with linear con-
nection functions λ(v) , µ(v) and ν(v). Then, the G1-condition for p and q
along u = 0 becomes a cubic equation in w = 1 − v. Denoting the partial
derivatives with respect to the directions e0 − e2 and e2 − e1 by subindices 0
and 1, respectively, this cubic equation is

λp0 + µq0 = νq1 , λµ > 0 .

At v = 0, we know the derivatives p0,q0 and q1. Hence, this equation
establishes a linear system for λ0 = λ(0), µ0 = µ(0) and ν0 = ν(0), with a
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one parameter family of solutions. Similarly, there is a one parameter family
of solutions λ1, µ1 and ν1 at v = 1. We choose arbitrary solutions at v = 0
and v = 1, which determine the linear functions λ, µ and ν. Since a cubic
is determined by its values and derivatives at two points, here v = 0 and
v = 1, we are also interested in the derivative and, therefore, differentiate the
G1-condition along u = 0. Thus, we obtain

λp01 + µq01 = νq11 + ν′q1 − λ′p0 + µ′q0 .

Expressing p01 , q01 etc. in terms of the Bézier points, we obtain at e1 the
equations

p01 = 6(p003 + p111 − p012 − p102) ,

q01 = 6(q021 + q111 − q012 − q120)
etc.

and similar expressions for p01,q01, etc. at e2. The points q11,q1,q0, and
p0 do not depend on p111 and q111 for v = 0 and v = 1. Substituting these
expressions into the differentiated G1-condition leads to a linear system for
p111 and q111 given by

[p111q111]
[

λ0 λ1

µ0 µ1

]
= [w0w1] ,

where w0 and w1 are combinations of known Bézier points pi and qi, except
p111 and q111. This system has a solution if the matrix

[
λ0 λ1

µ0 µ1

]

is invertible. Hence, a solution exists, unless λ(y) : µ(y) = constant. Only
for the configuration illustrated in Figure 13.3, a solution might not exist. ¦

Figure 13.3: Critical configuration.
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In fact, there is no solution if λ(y) : µ(y) is constant, if both quadrilaterals
are not affine and if the common boundary p(0, y) = q(0, y) is a regular
cubic, i.e., if qy(0, y) is a quadratic not passing through the origin.

Namely, rewriting the G1-condition as

px −
µ

λ
qx =

ν

λ
qy

results in a quadratic on the left. Since qy is also quadratic without real
root, it follows that ν/λ must be constant. This, finally, contradicts the
assumption that the two quadrilaterals shown in Figure 13.3 are not affine.

If q(0, y) is quadratic or non-regular, a solution exists with linear functions
λ, µ and ν, see Problem 3.

13.3 Piper’s G1 interpolant

In 1985, Bruce Piper [Piper ’87] presented a scheme to construct a piecewise
quartic G1 surface interpolating a triangular network of cubic curves, as
illustrated in Figure 13.4. We review the basic construction, but rule out
critical situations so that cubic patches suffice.

Figure 13.4: A triangular G1-net of cubic curves.

Adjacent “triangles” of a cubic net exhibit the configurations discussed in
13.2. For simplicity, we assume that there are no critical configurations as
in Figure 13.3. Then, any “triangle” can be interpolated by a macro patch
consisting of three cubic patches, as described below. Figure 13.5 shows the
Bézier points of such a macro patch schematically.
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The Bézier points c on the boundary are given by the cubic net. The Bézier
points care the centroids of their three neighbors cwith which they form a
planar quadrilateral which is shaded in the Figure.

The Bézier points care computed as in 13.2 such that adjacent macro patches
have a G1 joint.

The Bézier points are the centroids of the three neighbors c c cwith which
they form a planar quadrilateral (shaded in the Figure).

The Bézier point is the centroid of the shaded triangle .

Hence, adjacent patches of the macro patch have simple C1 joints in analogy
to the Clough-Tocher element, see 12.2.

Figure 13.5: Piper’s macro patch.

13.4 The vertex enclosure problem

Piper implicitly solves with his construction a special G1-problem. The G1-
conditions for adjacent patches sharing a common vertex form a cyclic sys-
tem. Whether this problem is solvable or not, is referred to as the vertex
enclosure problem. To discuss this problem, we consider n trilateral or
quadrilateral patches pi(x, y), i = 1, . . . , n, such that

pi(0, z) = pi+1(z, 0) ,

where pn+1 = p1, as illustrated in Figure 13.6, and

(2) λipi
x(0, z) = µipi+1

y (z, 0) + νipi+1
x (z, 0) ,

with any 3n connection functions λi(z), µi(z) and νi(z).
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Figure 13.6: A vertex enclosed by n patches, where n = 6.

For z = 0, these equations form constraints on the derivatives pi
x and the

connection functions, which can easily be satisfied. More difficult are the
twist constraints, which we obtain by differentiating the G1-conditions
(2),

λ′ip
i
x + λipi

xy = µ′ip
i+1
y + µipi+1

xy + ν′ip
i+1
x + νipi+1

xx .

For z = 0, these equations form the cyclic linear system

[p1
xy . . .pn

xy]




λ1 −µ1

−µ2 λ2

. . .
−µn λn


 = [r1 . . . rn] ,

where
ri = −λ′ip

i
x + µ′ip

i
y + ν′ip

i+1
x + νipi+1

xx .

We abbreviate this system by TA = R.

13.5 The parity phenomenon

The cyclic matrix A of the twist constraints exhibits the following phe-
nomenon. The rank of A is n if n is odd, and it is n − 1 if n is even.
Thus, A is non-singular only for odd n. Consequently, the twist constraints
are solvable if the number n of patches is odd, while, in general, there is
no solution if the number is even. In order to verify this surprising fact, we
observe that

detA = λ1 . . . λn − µ1 . . . µn

= Πλi −Πµi .
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Computing, the vector product of

λipi
x = µipi+1

y + νipi+1
x ,

with pi+1
x = pi

y gives

λi : µi = [pi+2
x × pi+1

x ] : [pi+1
x × pi

x] ,

which implies that
Πλi : Πµi = (−1)n

and, since all λi 6= 0,

detA

{
= 0 if n is even
6= 0 if n is odd .

Since the submatrix of A obtained by deleting the first row and column has
full rank, A has at least rank n− 1, which concludes the proof.

Remark 5: The twist constraints AT = R are solvable if the data originates
from patches p1, . . . ,pn forming a G1 surface. In particular, this is the case
when the pi form a piecewise polynomial reparametrization of a polynomial
patch.

Remark 6: If n = 4 and λ′i(0) = µ′i(0) = ν′i(0) = νi(0) = 0, for i = 1, 2, 3, 4,
as illustrated in Figure 13.7, then the twist constraints are solvable, see 9.7.

Figure 13.7: Equal opposite tangents.

Remark 7: One obtains always solvable twist constraints by splitting each
patch pi as in Piper’s construction described in 13.3, see [Peters ’91].

13.6 Problems

1 Show that the problem from Section 13.2 can always be solved if p and
q are quartic patches.
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2 Solve the problem from Section 13.2, where

p201 p111 p012

p300 p210 p120 p030

‖ ‖ ‖ ‖
q300 q210 q120 q030

q201 q111 q012

=




1
1
0





p111







6
1
1







0
0
0







2
0
0







4
0
1







6
0
1







1
−1

0





q111







5
−1/2

1


 .

3 Show that the problem stated in 13.2, see Figure 13.3, has a solution with
linear functions λ = µ and ν if q(0, v, 1− v) is quadratic or non-regular.
Hint: If q(0, v, 1−v) is quadratic, choose λ = µ = 1. If q1(0, v, 1−v) = o
for v = v0, set λ = µ = (v − v0)c1 and ν = vc2, where the constants c1

and c2 are chosen so that the G1-condition is satisfied at v = 1.

4 Show that the twist constraints in 13.4 have a solution if and only if

s = t1

(
1− µ1 · · · µn

λ1 · · · λn

)

can be solved for t1, where

s =
µ1 · · · µn−1

λ1 · · · λn
rn + · · · +

µ1

λ1λ2
r2 +

1
λ1

r1 .

5 The equation s = o can be viewed as a linear system for ν′1(0), ν′2(0) and
ν1(0). It has a (unique) solution unless p2

xx = o.

6 Consider two biquartic patches

p(x, y) =
∑

pijB
44
ij (x, y) and

q(x, y) =
∑

qijB
44
ij (x, y)

such that the boundary curves p(x, 0) and q(x, 0) agree and are cubic,
see Figure 13.8.

Let λ, µ and ν be any connection functions of degree 1, 1 and 3, respec-
tively, such that the G1-condition

λpy(x, 0) = µqy(x, 0) + νqx(x, 0)

and its derivative with respect to x hold at x = 0 and x = 1. Show that
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Figure 13.8: Moving two Bézier points so as to obtain a G1 joint.

one can change p21 and q21, in general, so that the G1-condition holds
for all x.


