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1. Introduction

Subdivision algorithms are popular in CAGD since they provide simple, efficient
tools to generate arbitrary free form surfaces. For example, the algorithms by
Catmull and Clark [1] and Loop [2] are generalizations of well-known spline
subdivision schemes. Therefore the surfaces produced by these algorithms are
piecewise polynomial and at ordinary points curvature continuous.

At extraordinary points however, the curvature is zero or infinite. In general,
singularities at extraordinary points is an inherent phenomenon of subdivision,
see [3, 4, 5].

The smoothness of a subdivision surface at its extraordinary points depends
on the spectral properties of the associated subdivision matrix.

Doo and Sabin [6] derived necessary conditions on the eigenvalues. Ball
and Storry [7, 8] made first rigorous investigations to prove the tangent plane
continuity for a class of Catmull/Clark type algorithms. Then Reif [9] ob-
served that tangent plane continuous surfaces may have local self-intersections
and introduced the characteristic map defined by the subdominant eigenvectors.
Moreover, for all stationary subdivision schemes he derived necessary and suffi-
cient conditions which guarantee that the limiting surface is regular, i.e. tangent
plane continuous without local penetrations.
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Finally, in [10] Reif’s characteristic map is used to parametrize the subdi-
vision surface. With this parametrization it is possible to extent Reif’s result
and to obtain for all stationary subdivision schemes necessary and sufficient
conditions which guarantee that the limiting surface is a regular G*-surface.

Doo and Sabin [6], Ball and Storry [8] and Loop [2] used the smoothness crite-
ria to find among certain variations of the Catmull/Clark and Loop’s algorithm
the best. However, these best algorithms still produce curvature discontinuous
surfaces, see e.g. [8].

In [11] we took a different approach. Instead of varying the subdivision
rules within some bounds which are set heuristically, we changed the spec-
trum of the subdivision matrix so as to obtain the desired properties. Using
the GG?-characterization in [10] we derived a G*-subdivision algorithm from the
Catmull/Clark algorithm (which does not produce infinite curvatures), see [11].

Here we provide similar improvements, a G''- and a G?-algorithm based on
the butterfly and Loop’s algorithm.

2. Loop’s algorithm

Loop’s algorithm generalizes the subdivision algorithm for surfaces expressed in
terms of the symmetric quartic box spline over a regular triangulation of R?. It
generates from any triangular net Ay a new net A7, whose vertices are classified
as E- and V-vertices.

Computing the weighted averages of the four vertices of any two triangles
in Ny sharing a common edge with the weights shown in Figure 1 gives the E-
vertices. Similarly computing the weighted averages of all vertices of all triangles
in Ny around any vertex with the weights shown in Figure 1 gives the V-vertices.
For n = 6 Loop chooses v = 5/8 since this corresponds to box spline subdivision.
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Fig. 1. The masks of the Loop algorithm — the V-mask is illustrated for n = 6.

The new net N is obtained by connecting for all triangles of Ny the associ-
ated three E-vertices and for all edges of Ny the associated E-vertices with both
associated V-vertices. By the same procedure a next net A5 is obtained from
Ni and so on.
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A vertex of any net N;, i > 1, is called extraordinary, if it is an interior vertex
with valence # 6. An extraordinary vertex of A is a V-vertex associated with
an extraordinary vertex of A;_i. Thus the number of extraordinary vertices is
constant for all nets N;,i > 0, and these vertices are separated by more and
more ordinary vertices as i grows.

In particular if Ny is a regular triangular net, i.e. without extraordinary ver-
tices, Loop’s algorithm coincides with the subdivision algorithm for quartic box
spline surfaces. Thus also for an arbitrary net Nj the sequence N; converges
to a piecewise quartic surface with one extraordinary point for each extraordi-
nary vertex of Ay. The limiting surface is a C?-surface everywhere except at its
extraordinary points.

Loop’s analysis shows that the limiting surface has a continuous tangent
plane at its extraordinary points for a certain range of a’s, see [2] .

3. The butterfly algorithm

The butterfly algorithm of Dyn et al. [12] generates a sequence of triangular
nets N;,i > 0, similar to Loop’s algorithm. Only the masks used to compute
the E- and V-vertices are different. They are given in Figure 2.
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Fig. 2. The masks of the butterfly algorithm.

A sequence of nets N; obtained by the butterfly algorithm with small pos-
itive w converges to a surface that 1s differentiable everywhere except at its
extraordinary points of valence 3 [12, 13] and n > 8.

At extraordinary points of valence n > 8 the surface is tangent plane contin-
uous but it has self-intersections and therefore is not regular. We checked this
for several w. However, in the sequel we always work with w = 1/32.

Variations of the butterfly algorithm have been proposed by Zorin et al. [14].
Recently these variations were proved to generate regular G'l-surfaces [15].

4. A smoothness condition

In Sections 5 and 6 we present modifications of Loop’s and the butterfly algo-
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rithm giving G%- or G'-surfaces in the limit. The method used to derive these
modifications is based on the G*-analysis of subdivision schemes given in [10]
and can also be used for subdivision schemes for quadrilateral nets [11].

For more details we need to recall a result from [10]. We present it in the
theorem below for any subdivision scheme § that is identical with the butterfly
or Loop’s algorithm except that E- and V-masks may be different.

We assume that the limiting surface associated with any initial triangular
net Ny obtained by the subdivision scheme § has C*-parametrizations around
all its ordinary points.

Extraordinary points are isolated as observed in Section 2. Therefore, to
analyze the smoothness of the limiting surface at extraordinary points it suffices
to consider a subnet Mg of Ny consisting of one extraordinary vertex surrounded
by say rg rings of ordinary vertices as illustrated in Figure 3 for ro = 3.

Fig. 3. A net with one extraordinary vertex of valence 5 (marked by ) surrounded by rg = 3
rings of ordinary vertices.

Further let M; be the largest subnet of Ay whose vertices depend only on
My. This net M; also has only one extraordinary vertex surrounded by say
r1 rings of ordinary vertices and in case of the butterfly algorithm by a further
incomplete ring of V-vertices. To make M; of a similar form as My we delete
such an incomplete ring which modifies the definition of M;.

Note that r1 is roughly twice as lage as ry. For example in Loop’s algorithm
r1 = 5 if o = 3 and in the butterfly algorithm r; = 6 if ry = 4.

Let 7y be so large that 1 — o > 1. Then discarding the r; — ry outer
rings of M gives a net Ky with the same size and connectedness as My. Let
my,...,m, and ki,..., k,; denote the vertices of My and K;, respectively.
Since the vertices k; are affine combinations of the m;, there is an m x m
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matrix A such that
[kl N km]t = A[m1 N mm]t.

Let sy denote the limiting surface associated with Mg under the subdivision
scheme §. Applying & to M gives the same limiting surface sg, but the surface
s1 associated with the subnet Ky is smaller and only a part of sg. Taking s;
away from sy gives the here so-called first surface ring associated with M.

Now we are able to present the following theorem which is proven in a more

general form in [10] :
Theorem 1 Let A have the m (possibly complex) eigenvalues 1, X\, A\ p, ..., ¢,
where 1> |X| > |p| > -+ > |(] and assume two eigenvectors ¢ and d associated
with the double for simplicity real eigenvalue \. If the first surface ring of the
net given by [c1 ... .cpn]t = [ed] is regular without self-intersections and

A > Jul, k>1, (1)

then the limiting surface is a G*-surface for almost all initial nets M.
Remark 2 More precisely, if Theorem 1 is satisfied, the limiting surface is a
G*-surface for all initial nets My whose expansion by the eigenvectors of A
wnwolves ¢ in one and d in a second coordinate.

The eigenvalue condition (1) goes back to Doo and Sabin [6]. The first
surface ring associated with the eigenvectors ¢ and d is called the characteristic
map of A by Reil who used it to prove this Theorem for k = 1 [9]. An example
for the characteristic map of Loop’s algorithm is shown in Figure 4.

Fig. 4. The characteristic map of Loop’s algorithm at an extraordinary vertex of valence
n=".

If the limiting surface in Theorem 1 is a C*-manifold, & > 2, then the
extraordinary point is a flat point. This fact is also true for more general
subdivision schemes, see [4, 5].



5. Modifications of Loop’s algorithm

The subdivision matrix A of Loop’s algorithm associated with an extraordi-
nary vertex of valence n has a single dominant eigenvalue 1 and satisfies the
(1-conditions of Theorem 1 [2, 16], but not the G*-condition [17]. To obtain a
subdivision matrix A’ that represents a modification of Loop’s algorithm satis-
fying the G?-condition we diagonalize the matrix A,

A=VAV™L  where A = diag(1,\, A\, g, ..., (),
change the modal matrix A to
A = A+ diag(0,0,0,8,,...,9¢c), where |p+d,],..., ¢+ 8¢ < A%

and compute the new subdivision matrix as

A =VANVTL (2)
Lemma 3 The matrices A and A’ have the same characteristic maps.
Proof The eigenvectors associated with A are the same for A and A’. They
define a planar control net Ay. Subdividing Ny by Loop’s algorithm and also
by the modification results both times in the same sequence of nets N;. The
extraordinary vertex and its three surrounding rings of control points in N; are
scaled versions of Ny. The other control points of A; are computed by the
subdivision rules for regular nets. Thus Loop’s algorithm and its modification
applied to Ny produce the same surface in the limit. a

The symmetry of Loop’s scheme means that the subdivision matrix A is
block-circulant. Therefore a discrete Fourier transformation can be used to
analyze the spectral properties of A.

If n = 3, the matrix A has the subdominant eigenvalue A = 1/4 and exactly
six eigenvalues with modulus in the half-open interval [|A]?,|A|). These are the
two triple eigenvalues 1/8 and 1/16. Changing just these triple eigenvalues to
the triple eigenvalues 1/8 + 1 and 1/16 + ¢4, respectively, such that |1/8 + £|
and |1/16 + 2| are less than |A|%, results in a matrix A’, which represents the

same masks as the original matrix A except for the E- and V-masks shown in
Figure 5, where

1 &1 1 &1 362
P =5t 3Gy L TR P e TP
3 (16a—T)e 5 (16a—T)e;  (16a— 10)es
=87 Ba ) =87 32a—1)  3(16a—17)
1 1
5z—g+61, 72:E+62,
(200 — 11)e; 1
b= a1 BT

_ 1, Qa-2a  (20-11)
HT16 T 32a—1) © 3(16a—7)
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E-mask V-mask

Fig. 5. The E- and V-masks of the modified Loop algorithm near a vertex of valence n = 3.

If n > 4, the matrix A has k := | (n—1)/2] — 1 double eigenvalues besides A.
We denote these eigenvalues by g1, ...,y and assume |py| > -+ > || Fur-
thermore, any eigenvalue of A with modulus in the half-open interval [[A|%, |A])
is one of these double eigenvalues p; but not vice versa.

Changing just these double eigenvalues y; to the double eigenvalues p; + d;
results in a matrix A’, which represents the same masks as the original matrix
except for the E-mask illustrated in Figure 6, where

n

k .
gy 2 , miG+ DY L
az—fz+n;5]cos< ),2_0,...,Ln/2J

and
3/8 1=20
fi= /8 if i=1.
0 1> 2

Note that Loop’s masks, see Figure 1, are obtained if all 6’s and &’s are zero.

Figure 7 shows an example. The left surface is generated using Loop’s al-
gorithm while the right one is produced with the above modified masks, where
01 = 0.03755 and d5 = --- = §, = 0. The surfaces are shown with the visual-
ization of their Gaussian curvature. To compute the curvature we iterated the
algorithm until the hole became smaller than one pixel and then used the piece-
wise quartic parametrization of the surface and not a discrete approximation
based on the subdivided control net. The common control net of both surfaces
is given in Figure 8.



E-mask

Fig. 6. The E-masks of the modified Loop algorithm near the vertices of valence n > 4
illustrated for n = 8.
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Fig. 7. Visualization of the Gaussian curvature of the surface generated from the net shown
in Figure 8 by Loop’s algorithm (left) and our modification (right).

Fig. 8. Topview of the control net used for Figure 7. It lies on a parabolic cylinder.
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Remark 4 In some cases better looking surfaces are obtained if Loop’s algo-
rithm is gradually modified after each subdivision iteration. For example, start-
ing from the net Ny shown in Figure 10 the sequence of nets N, i = 0,...,6,
leading to the surface shown in Figure 9 (bottom left) has been obtained by Loop’s
algorithm modified with €1 = 25 — \/1/384 when applied to the net N;. In fur-
ther iterations we would chose €1 and €5 constant as in step 6. Note that the
modified subdivision matriz satisfies the conditions of Theorem 1 for ¢ > 2.

The adaptive linear combination of Loop’s and our scheme produces a surface
with a more even curvature distribution and without infinite curvature.

Fig. 9. Visualization of the Gaussian curvature of the surface generated from the net shown in
Figure 10 by Loop’s algorithm (top left), our modified scheme (top right), an adaptive linear
combination of Loop’s and our scheme (bottom left) and our modified scheme using the thin
plates energy to determine the weights of the masks (bottom right).

Remark 5 The eigenvalues of A with modulus less than |\|? need not be changed.
However, the masks of the modified algorithms depend linearly on 6, ..., d¢, see
(2). Therefore quadratic energy functionals can be used to determine the optimal
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Fig. 10. Topview of the control net used for Figure 9. It lies on a hyperbolic paraboloid.

values for d,, ..., d¢.

An example surface is shown in Figure 9 (bottom right). Starting from the
witial net of Figure 10 the surface s computed by the modified Loop algorithm
using the thin plates energy to provide the weights for the masks.

6. Modifications of the butterfly algorithm

A limiting surface obtained by the butterfly algorithm is not differentiable at ex-
traordinary points, in general. This can be seen from the associated subdivision
matrix A which is block-circulant

AO Al An—l

An—l AO An—Z
A=

Al An;l AO

Let A = diag(ﬁo, e ﬁ”_l) be the discrete Fourier transform of A. Then the
blocks A, i =0,...,n — 1, are given by

di 0
T
o « | % | R ’
* *x | x [ O
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with the Kronecker symbol 6; o, the 4 x 4 zero-matrix O and

R T+ (4ch, — 22w 0 —(1 +a;w
L = 1 0 0 )
i %—(a;i—l—aff)w —(1+ a))w 2w
[0 —w —a;iw
R = 0 —w 0
0 0 —w

and a, = exp(2mv/—1/n), ¢!, = Re(a’,). The eigenvalues of A are the eigenvalues
of the blocks A",i=0,...,n — 1, and are as follows:

a simple eigenvalue 1,
a (6n — 1)-fold eigenvalue 0,
a 2n-fold eigenvalue —w and

the eigenvalues of Ei,i =0,...,n—1.

For an extraordinary vertex of valence 3, the largest eigenvalue of EO, L' and
L2 is (14 /1 —16w)/4. Therefore the subdominant eigenvalue X is the triple
eigenvalue A = (1 + /1 — 16w)/4 whose associated eigenvectors are linearly
independent. So the limiting surface i1s not differentiable at an extraordinary
point for valence 3.

However, the leading eigenvalues of I' and L? are associated with eigen-
vectors forming a regular and injective characteristic map. As in Section 5 we
write L0 as

L0 = ‘70A‘70_1, where A = diag(A, p, 4w),
and (see [18])

A op dw
~ 144w —2
Vo = 1 1 1 ’ — w
w
1/)>\ 1/);1 1/)4w

where v € {A p,4w}. Changing the leading eigenvalue A to A + ¢, such that
|[A+ el is less than A results in a new modal matrix A’ and a modified block o,
The inverse, discrete Fourier transform gives the modified matrix A’. It differs
from the initial matrix A at those blocks that depend on L. These are the
second diagonal blocks, L, of the blocks A*. Their modifications are

@3;+1 Q342 Q343 N N

Baivr stz faigs | = L'+ 2Vo - diag(s,0,0) - Vit i=0,1,2.

V3i+1 V342 V3043
From this we read of the masks of the modified butterfly algorithm which are
shown in Figure 11, where we used

g 1 o

j
Bo |=111]- Z B
Yo 1 =11
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E-mask

Fig. 11. The E- and V-masks of the modified butterfly algorithm near a vertex of valence
n = 8.

For extraordinary vertices of valence n = 4,...,7 the limiting surface is a
regular C''-surface, see [19].

For an extraordinary vertex of valence n > 8 the subdominant eigenvalue
A comes from L! with i # 1,n — 1. This means that the characteristic map
of the subdivision matrix A overlaps itself, cf. [15, 20]. However, the largest
eigenvalue of L' is associated with two eigenvectors representing the control
net of a regular injective surface ring. So let A; denote the largest eigenvalue
of Ei,i =1,...,n—1,. Then we change the eigenvalues \;;i = 2,...,n — 2,
with modulus in [[A1],1) to |A; 4+ ;] < Ay as in Section b so that A; becomes
the subdominant eigenvalue. The eigenvectors of Ei,i =2,...,n— 2, form the
matrices V; given by (see [18])

DV VR ) 0
N ) ) ) 1 Ao (2ct — N _9 .
75 U I C”Z,/zc”) Y) gif2
Ua, U5, U, e

for v € {/\Z',Xi, A} = spec(fi). This yields again the masks of Figure 11 with
the weights

Q3i+1 Q342 343 I R -~

B3iv1 Ptz Paiys | =L+ - Z a,) Vi - diag(d;,0,0) -V~

V3i+1  V3i+2  V3i+3 Jj=2
fori=0,....,.n—1and ag = 1/2,80 = 0,70 = 2w. Note that the weights are
always real if §,,, = 6,,_, for i =2,... [n/2].
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Figure 12 shows an example with an extraordinary vertex of valence n = 14.
The top row shows the surfaces generated using the butterfly scheme (left) and
the above modified masks (right) with the parameters w = 1/20 and J,, =
p1— s — 0.02 for p; > p1,72 =2,...,n — 2. The bottom row shows a selective
enlargement of some vicinity of the extraordinary point of the two surfaces,
respectively. Note that the left surface has self-intersections while the right
surface as well as the common control net of both surfaces, see Figure 13, have
no self-intersections.

Fig. 12. The surface generated from the net shown in Figure 13 by the butterfly scheme (top
left) and our modification (top right). The bottom row shows an enlargement of some vicinity
around the extraordinary point of the two surfaces from a different perspective as the top row
with their respective boundary curves.

Remark 6 The surface obtained by the modified butterfly algorithm does not
interpolate all vertices of the initial control net. However, if we use the butterfly
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Fig. 13. The control net used for Figure 12.

algorithm in the first iteration and the modification in all further iterations, all

ve

rtices of the initial net are interpolated.
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