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Interpolation of curves using variational
subdivision surfaces
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Abstract. We introduce a variational method to interpolate or approx-
imate given curves on a surface by subdivision within a given tolerance.
In every subdivision step some new points are determined by the inter-
polation constraint and the other new points are varied by solving an
optimization problem to minimize some surface energies such that the
resulting surfaces have high quality. This method is simple to implement
and can flexibly meet different quality requests.
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1 Introduction

Interpolation of space curves by fair surfaces often appears in practical applica-
tions for computer graphics and geometric modeling. For example, in product
shape design we usually have some predefined curves such as feature lines from
which an interpolating surface is to be reconstructed. In bio-medical modeling we
often want to reconstruct an anatomical structure from contour lines obtained
by e.g. CT scans. The general problem is how to reconstruct a surface that
interpolates or approximates some arbitrary space curves which lie in principal
on an arbitrary underlying surface. The reconstructed surfaces should have high
quality, i. e., they are fair surfaces which minimize certain surface energies [20].

The interpolation problem is a fundamental problem in geometric design
where smooth shapes under interpolation conditions are represented with math-
ematical models.

Since the given curves and the underlying surface could have arbitrary topol-
ogy, subdivision schemes [5,3,17,6,25,11] are appropriate to reconstruct the
surfaces with arbitrary topology. Furthermore, subdivision schemes provide an
efficient multiresolution representation [26, 12] of subdivision surfaces, i. e., dur-
ing the proceeding of subdivision every subdivided polygonal mesh is an approx-
imation of the limit surface and looks smoother than the previous one and thus,
a subdivided polygonal mesh after only a few subdivision steps is mostly already
appropriate for shape design in practice.

The usual interpolation subdivision schemes, e. g., the butterfly scheme [6, 25]
and the Nasri’s modified Doo-Sabin scheme [18], generate limit surfaces interpo-
lating given points. These subdivision schemes are stationary, which means that
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the vertices of a subdivided mesh are computed by applying fixed affine combi-
nations on the vertices of the old mesh. With this property, stationary schemes
are inadequate to generate surfaces interpolating freeform curves.

It is well-known that the Lane-Riesenfeld subdivision algorithm [13] generates
splines, which minimize some energies, e.g., an univariate spline function s of
degree 2m + 1 with single knots zo(= a) < 1 < ... < ,(= b) has the minimum
property

b
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under the constraints

f € C™[a, b] and f(™+V) is quadratically integrable over [a, b],
f(l‘i) = 8(1’2), i = Oa"'vna

s (a) = fO(a), s(b) = fO), i=1,...,m, and
sWD(a)=sDDb)=0,i=m+1,...,2m,

and the equality in the inequality only holds for f = s over [a, b], see [21] and
for m =1 also [2, P. 125]. Hence, Lane-Riesenfeld subdivision surfaces and most
usual subdivision surfaces on regular part can be considered as the solution of
some variational problems. Using variational technique we can extend the class
of stationary subdivision schemes to a larger class of wariational subdivision
schemes, which are well-defined on both regular and irregular meshes, see an
example of the umbrella scheme [9, Chp. 5.1] and the variational subdivision
approach generating C* interpolating curves [10].

In this paper we introduce a nonstationary subdivision scheme using varia-
tional technique in every subdivision step to interpolate given curves on a sur-
face. To the best of our knowledge this is the first solution to the interpolation
problem of arbitrary curves using a variational subdivision scheme.

2 Previous work

The combined subdivision schemes [14, 15] modify the Catmull-Clark scheme to
interpolate some given curves by G subdivision surfaces, where the subdivision
rules are changed in the neighborhood of the interpolated curves in every subdi-
vision step. The interpolated curves are given in a parametric representation and
the changed rules depend on this parametrization, e. g., the second derivative of
the curves, which leads to complicated calculations. Another limitation of the
combined subdivision is that at most two curves could intersect at a point and,
in addition to the interpolated curves, a control mesh should be given.

Based on the Doo-Sabin scheme, Nasri developed another subdivision scheme
[19] to interpolate curves, which also needs to change the subdivision rules in
the neighborhood of the interpolated curves.

Another modified Catmull-Clark scheme [24] can be used to interpolate cubic
B-spline curves where the control mesh must have certain symmetric properties
on both sides of the control polygon edges of the interpolated curves.



Interpolation of curves using variational subdivision surfaces 3

Besides the above subdivision approaches, Ju, Liu and others [8, 16] recon-
structed interpolating surfaces from curves on parallel or non-parallel cross-
section planes. Their works focused on segmenting the underlying object by
medial axes that are determined by the given cross-section planes.

In this paper we consider a more general problem that the interpolated curves
are freeform curves which lie in principal on an arbitrary underlying surface.

3 A variational subdivision scheme to interpolation of
curves

3.1 Basic idea

triangulation
—

refinement

variation

Fig. 1. From the given curves (top left) to the interpolating surface (bottom left).

The basic idea of the variational subdivision scheme is seen in Fig. 1. First,
we choose some points from the given curves and construct an initial triangular
mesh with these points as vertices. Second, in every subdivision step, the mesh is
uniformly refined and new vertices are varied to meet the interpolating constraint
and to minimize some surface energy by solving a variational problem. The
solution of the variational problem is obtained by solving the associated Euler-
Lagrange equation.
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3.2 The umbrella energy

For a given triangular mesh, the umbralla of degree 1 of an inner vertex p is
defined by

ln—l
Ap:=p— — )
p:=p n;qz,

see Fig. 2, where qq,...,q,_; are the neighbors of p which are connected with
p by an edge.

qs \J
Fig. 2. The umbrella of degree 1 of p.

The umbrella of degree 1 of a boundary vertex is defined as O.
Tteratively, the umbrella of higher degree k is defined by the k-ring neighbors
of an inner vertex

n—1
1
AFp = AFTlp — — N " AFq, k>2,
n
=0

where the k-ring neighbors of p are the set of the vertices that are connected
with p by a path consisting maximal k£ edges.
The umbrella of degree k of a boundary vertex is defined as 0.

Theorem 1 (Approximation property of the umbrella operator)

(i) For an arbitrary mesh, the umbrella operator of degree 1 is a discrete ap-
prozimation of the Laplace operator

where £ is a parametrization of the limit surface in the neighborhood of the
vertexr p.

(i) For a regular triangular or quadrilateral mesh, the umbrella operator of
higher degree k is a discrete approximation of the k-th Laplace operator

L*f(z,y) = L(LF 'f(2,y)), k>2.
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Proof: Let f be a local parametrization of the limit surface such that

271y 271y
p=1£(0,0) and q; f<hcos <7r]> , hsin (W)) ,j=0,...,n—1,
n n

where h is a sufficiently small number.
Suppose that f is sufficiently differentiable. Using the definition of Ap and
the Taylor series with second degree Taylor polynomial

f..(0,0)
£(,y) = £(0,0) + [z [igggg} +2a 20y 47 £(0.0)
+0(h%) (1)

we get
h2
Ap = szf(O, 0) + O(h?),

by which we derive (i).

For a regular triangular or quadrilateral mesh, every inner vertex has valence
n = 6 or n = 4, respectively. We first consider degree k = 2 and the 2-ring
neighbors of p. We can parametrize the limit surface by f such that

271y 27y
p=1£(0,0), q, _f<hcos <7T]> , hsin (W)) ,j=0,...,n—1,
n n

and for j,k=0,...,n—1

27 2 27y 2
rjp="f (hcos (M> + hcos (71%) , hsin (WJ) + hsin (Wk)> ,
n n n n

where h is a sufficiently small number and r;g,...,r;,—1 are the neighbors of
q;. Again, using the Taylor series with 4-th degree Taylor polynomial we get

h2
Ap = —Z(fm(070) +£,,(0,0))
h4
_a(fmzm (0, 0) + 2fm3yy (07 0) + fyyyy(ov 0)) + O(hS) (2)
and
h2
Aq; = = (Faa(cj, 55) + fyy(c585))
h4
_&(fﬂcmz (¢js85) + 28 zayy(cs, 85) + Fyyyy(cs, 85)) + O(h5) ) (3)
where ¢; := hcos(2mj/n), s; = hsin(2mj/n). From (2), (3) and (1) it follows
h4
A’p = 1—6(fmm(07 0) + 2f 124, (0,0) + £, (0,0)) + O(h®)

ht -
= 1—6L2f(0, 0) + O(R°) .
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Similarly, we can show (ii) for kK > 3. O

For a mesh, the umbrella energy of degree k is defined by the sum of the
squared umbrellas of degree k of all vertices in the mesh, e.g., the umbrella
energy of degree 1 and 2 are

Ey = Z |4p;[3 and E,:= Z 14%p,5 -

Additionally, we define the mized umbrella energy
E1,5 = (E1 + EQ)/2 .

According to Theorem 1, the umbrella energy of a mesh is a discrete approx-
imation for the Laplace energy of the continuous limit surface. By minimizing
the umbrella energy in every subdivision step, Kobbelt developed the so-called
umbrella subdivision scheme [9, Chp. 5.1], which is a variational nonstationary
scheme.

Since the umbrella energy of each degree is a quadratic energy, one can solve
this optimization problem by its Euler-Lagrange system, which is sparse and
linear. For example, for the umbrella energy of degree 1, it holds

Ey = min & 0E1(py, Py, ---)/0p; =0 for all modifiable p,
< 2(Ap,; — Z;h:_ol n%_qu) =0 for all modifiable p;, (4)
where qq, ..., q,,_; are the neighbors of p,.
This sparse linear systems can be efficiently solved, e.g. by the Gauss-Seidel
method.

3.3 Algorithm

Algorithm 1: A variational subdivision algorithm

Input: Some arbitrary space curves which lie principally on a surface
Output: An interpolating surface

[Step 1] Construct an initial triangulation from the curves ;

repeat
[Step 2] Uniformly refine the old triangular mesh ;
[Step 3] Move the new curve vertices to the curves ;
[Step 4] Fair the triangular mesh ;

until the mesh is fine enough;

To construct an initial triangulation in [Step 1], some equally spaced points
on every curve are chosen, where the distance between two neighboring points
is controlled by user through a parameter. All these points are marked as curve
vertices and, for each curve vertex, the associated given curves are also recorded.
With respect to these points we generate a triangulation using the well-known
Ball-Pivoting algorithm [1] or the modified Delaunay algorithm [4, Chp. 9]. For
the modified Delaunay algorithm, the points are projected onto a plane and the
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triangulation is first generated for the transformed points in the plane using
Delaunay algorithm and then, the outputted triangulated topology is used for
the original (non-transformed) points. Thus, the modified Delaunay algorithm
works only for the curves that can be almost uniformly projected onto a plane.

In each subdivision step, the mesh is first uniformly refined by adding edge
midpoints and thus, each old triangle is subdivided uniformly into four small
triangles [Step 2]. If the both endpoints of an old edge are curve vertices and
are associated to a same curve, then the new edge midpoint will be marked as a
curve vertex too and the associated curve will be also recorded. Otherwise, the
new edge midpoint will be marked as a non-curve vertez.

In [Step 3] the new curve vertices are modified to meet the interpolation
constraint. Every new curve vertex p is moved to a nearest point p’ on the
associated curve and the neighboring new vertices q, are correspondingly moved
to q, see Fig. 3, where d = p’ — p and f is a real value function with values
between 0 and 1 depending on the distance between p and q;.

vertex

variation

q; =q; + f(a;,p)d

Fig. 3. Moving of a curve vertex p and its neighboring new vertices q;, such that the
new position p’ lies on the associated given curve.

The umbrella energy E; or Ej 5 is chosen to be the fairness energy of the
mesh and this energy is minimized in [Step 4] by varying new non-curve vertices
to the solution of a Euler-Lagrange system such as (4). Note that, if the new
curve vertices are also allowed to be varied in the Euler-Lagrange system within
a given tolerance to the associated curves, then we get an approzimation scheme,
which generates an approximation surface with better fairness. See examples in
Section 4.

This algorithm is an interpolating scheme that the vertices of the initial
mesh lie in the limit surface. Due to [Step 3] and [Step 4], the limit surface
interpolates the given curves and each subdivided mesh is varied to obtain the
minimum umbrella energy. If the new curve vertices are also allowed to be varied
within a given tolerance in [Step 4], then the scheme is approximating.

To solve the variational problem in [Step 4], the Gauss-Seidel method is ap-
plied. The convergence of this iterative method is still an open problem. However,
for the surfaces we used as test data, the method always converges.
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4 Evaluation and examples

In this section we show some examples (Fig. 4 - Fig. 8) of the variational subdi-
vision algorithm. To evaluate the reconstructed surfaces, we consider the widely
used thin plate energy

/ a(k? + K3) +2(1 — b)k1 kg dw ,
Q

where k1 and ko are the principal curvatures of the surface and a and b are
constants describing properties of the material. We calculate the principal cur-
vatures at a vertex p according to Taubin’s discrete approximation method [22],
which approximates a 3 x 3 symmetric matrix My, defined by the integral formula
1 s

— P(Ty) Ty T} df

o0 . ‘%n( 9) 0 Lo ’
where Ty is the unit length tangent vector and xP(Ty) is the normal curvature.
The principal curvatures at p are derived by k1 = 3A1 — A2 and Ko = 33X — Ay,
where A1, A2 and 0 are the eigenvalues of M.

The thin plate energy in a triangle is approximated by the linear interpolation
of the values on vertices. In the test we simply calculate the thin plate energy
for a = b =1, which coincides with the total curvature energy

/n%—i—/ﬁ%dw.
Q

If the underlying surface S is known, where the given curves lie exactly on,
then the similarity between a reconstructed surface R and S can be checked by
the Hausdorff distance

dy (S, R) = max{sup inf dist(s,r), sup inf dist(s,r)} .
s€STER reR S€S
Since the exact Hausdorff distance is complicated and expensive to be obtained,
we simply approximate the Hausdorff distance by a discrete form, which is based
on the distance between the vertices of R and the knots of the discrete repre-
sentation of S.

In Fig. 4, two subdivided meshes and the associated given curves are shown.
Each given curve relates to a chain of edges whose vertices lie on the curve. By
subdivision this chain converges to the curve and thus, the curve is interpolated
by the subdivision surface.

Surfaces are reconstructed from the curves in Fig. 5 using different variants
of the variational subdivision scheme. From total curvature energies in Table 1
follows that approximating surfaces usually have better fairness quality than
interpolating surfaces and using the umbrella energy E; 5 one usually get fairer
surfaces than using F.

The quality of the initial triangulation is critical for the quality of the result-
ing surfaces. For a underlying surface that can be almost uniformly projected
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Fig. 4. Two subdivided meshes after 2 subdivision steps based on the umbrella energy
E1.5 with 5 (left) and 8 (right) given curves, respectively.

=y

Fig. 5. 8 given curves (left) and the reconstructed surface (right) after 2 subdivision
steps based on FEj 5.

Variant Total curvature energy
interpolating surface using E1 70.25
approximating surface with tolerance 0.1 using F1|62.93
interpolating surface using Ei 5 68.85

Table 1. Total curvature energie of the reconstructed surfaces with the given curves
in Fig. 5.
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(1) (2) 3)

Fig. 6. A reconstructed surface using initial triangulation with the Ball-Pivoting algo-
rithm (1), a reconstructed surface using initial triangulation with the modified Delau-
nay algorithm (2) and a comparison with the underlying surface in (3).

onto a plane, the triangulation by the modified Delaunay algorithm is usually
better than that by the Ball-Pivoting algorithm, see Fig. 6. The Hausdorff dis-
tances of the reconstructed surfaces (1) and (2) in Fig. 6 are 0.75 and 0.23,
respectively.

In Fig. 7 and 8, we show the reconstruction of a part torus and two branches
from different given curves.

Fig. 7. Reconstructed surfaces of a part torus after 2 subdivision steps from different
given curves.



Fig. 8. Reconstructed surfaces of two branches after 2 subdivision steps from different
given curves
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5 Conclusion and future work

We present a simple variational subdivision algorithm for surface reconstruc-
tion from some space curves which lie in principal on a surface with arbitrary
shape and topology. The generated surfaces are guaranteed to interpolate or ap-
proximate given curves within a given tolerance. In addition, the reconstructed
surfaces have high quality due to their fairness and this algorithm provides an
efficient multiresolution representation of the reconstructed surfaces. To the best
of our knowledge this is the first variational subdivision algorithm to solving this
interpolation problem.

Some limitations and extensions of this algorithm are to be addressed in
the future. First, a proper initial triangulation in [Step 1] is critical for the
algorithm, see for example Fig. 6. For given curves on a complex underlying
surface, the triangulation methods suggested in [Step 1] do not always work
and we would like to develop convenient means for the user to select curve
vertices and generate an initial triangulation automatically or half-automatically,
such that the initial triangulation has the right topology and the desired initial
shape. Second, in the variation phase [Step 4], other surface energies can be
flexibly used as fairness energies to improve the quality of the reconstructed
surfaces or to adapt for requirements in different applications [7]. For example,
the Euler-Lagrange equation of the mean-curvature energy is a sixth-order flow
and the surfaces with minimal mean-curvature energy under some constraints
are visually C? [23]. However, some non-linear problems have to be dealt with
to optimize these non-quadratic energies in the variation phase.
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