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Abstract
We present a new method for simulating volume conserving deformable bodies using an impulse-based approach.
In order to simulate a deformable body a tetrahedral model is generated from an arbitrary triangle mesh. All
resulting tetrahedrons are assigned to volume constraints which ensure the conservation of the total volume. For
the simulation of such a constraint impulses are computed and applied to the particles of the assigned tetrahedrons.
The algorithm is easy to implement and ensures exact volume conservation in each simulation step.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Physically based model-
ing, I.3.7 [Computer Graphics]: Animation

1. Introduction

The dynamic simulation has become an important area of re-
search in computer graphics and has many applications such
as virtual environments, movie special effects and games.
Topics like multi-body systems, water simulation and cloth
simulation have been researched. The task of simulating de-
formable bodies is still a challenging problem, especially
when the volume of the body has to be conserved.

In this paper a new method for simulating volume con-
serving deformable bodies using an impulse-based approach
is presented. The impulse-based dynamic simulation de-
scribes a body as a set of particles linked by constraints.
These constraints are satisfied by the computation of im-
pulses. Constraints can be used to model joints, collisions
and permanent contacts. In this paper the constraints enforce
a body to conserve its total volume. Therefore a tetrahedral
mesh is built to describe the volume. The tetrahedrons are
assigned to constraints which are solved iteratively during
simulation. The original triangle mesh can be assigned to
the tetrahedral mesh and used for the visualization while
the tetrahedral mesh is used for the simulation. With the
impulsed-based approach even cyclic dependencies can be
solved and no special treatment for the interaction with other
objects like rigid bodies is needed.

2. Related Work

Since the first general physical model for the simula-
tion of two- and three-dimensional deformable objects was

presented [TPBF87], different approaches for simulating
cloth and deformable bodies were studied. In [THMG04]
a method for simulating deformable solids was introduced,
where triangle and tetrahedral meshes with up to thousand
primitives were simulated at interactive speed. The simula-
tion could handle elastic and plastic deformations but could
not guarantee the conservation of the total volume at each
point of time. [MHTG05] showed mesh deformations where
no connectivity is needed. They match a set of moved parti-
cles with the original ones by minimizing an energy function
to restore the volume as good as possible. In the area of finite
element simulation [ISF07] presented an approach adapted
from fluid dynamics simulation, where the volume was con-
served in a one-ring of tetrahedrons by making the velocities
divergence free. The tetrahedral model was generated from a
level set as described in [TMFB05]. The interaction between
rigid and deformable bodies is presented in [RMSG∗08].
More control of the deformations can be achieved by us-
ing key frame interpolation as presented in [AOW∗08]. In
this paper an impulse-based approach is used, because of its
performance, stability and simplicity [Ben07].

3. Tetrahedral mesh

In order to represent the deformable bodies a volumetric
structure must be created. Tetrahedral meshes are commonly
used for this purpose. Spillmann et. al. [SWT06] presented
an algorithm which creates tetrahedral meshes from arbitrary
triangle soups. Thus, this approach can handle objects where
the enclosed volume is not defined. We extend their algo-
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rithm for our purpose to generate the volumetric representa-
tion.

The key idea of the approach is to generate a pseudo vol-
ume from a triangle mesh. In order to determine the pseudo
volume a distance field is computed in the first step. A stan-
dard approach as described in [Bær05] is used for this. The
signs of the distances are determined by casting rays through
the field. Let the distance field be defined in the axis-aligned
bounding box of the mesh subdivided into voxels. The prob-
ability

P(x) = 1− c|dmin(x)|

is assigned to each center x of a voxel, where dmin(x) is the
distance from x to the closest surface point and c is a nor-
malization parameter so that 0≤ P(x)≤ 1. Each voxel must
be classified whether it is part of the pseudo volume or not.
The classification is made by casting rays from different di-
rections through the distance field. For each voxel traversed
by a ray the probability P(x) is used to make the decision.
The final sign of a voxel is determined by a majority vote
from all rays.

When casting a ray with direction v through the distance
field the probability P(x) is used to check how likely it is
that the ray enters or leaves the pseudo volume. Two user
defined thresholds Pin and Psubs are used to make the deci-
sion. The ray enters or leaves the volume if P(x) > Pin and
∂P
∂v (x) > 0. A subsequent volume change is only reported if
P(x) < Psubs and ∂P

∂v (x) < 0 in the meantime. This gives con-
trol to the user to finely adjust the resulting pseudo volume,
especially for thin objects as shown in Figure 1. An adequate
approximation of the original triangle mesh is sufficient for
our purpose, because the triangles of the original mesh can
be used for the visualization using freeform deformations as
described in [MJBF02].

Figure 1: A tree with its different pseudo volumes depend-
ing on the user defined thresholds (top) and the resulting
tetrahedral models (bottom).

After each voxel is classified whether it is part of the

pseudo volume or not, an uniform lattice with cells is gen-
erated onto the distance field, where each cell belonging to
the pseudo volume is subdivided into five tetrahedrons. A
cell with volume V lies in the pseudo volume if the pseudo
density

ρ(V ) =
m(V )
M(V )

is larger than a user defined threshold. M(V ) is the total
number of voxels within V and m(V ) is the number of vox-
els within the pseudo volume. To avoid small holes at the
boundary where no tetrahedrons have yet been generated,
cells with more than three adjacent cells already belong-
ing to the pseudo volume are iteratively added. After the
tetrahedrons are generated, sharp corners must be smoothed.
Thus, a second order laplacian filter [DMSB99] with volume
preservation is applied to the surface of the tetrahedral mesh.
More symmetrical and smoother results are obtained when
only considering the vertices in the umbrella operator which
are connected over axis-aligned edges in the unsmoothed
tetrahedral mesh. If vertices connected by diagonal edges are
also considered in the umbrella operator, then sharp corners
are smoothed depending on the triangulation of the surface.
Symmetrical smoothed models are important for the simu-
lation in order to guarantee symmetrical deformations. See
Figure 2 for the differences between the standard smoothing
and our variant. After the computation of the distance field
the user can interactively change the resolution of the lattice,
the thresholds and smoothing parameters to adjust the model
to his needs. The tetrahedral mesh can be adapted to a coarse
mesh like the convex hull as well to a finer detailed mesh by
adjusting the parameters of the algorithm.

Figure 2: An object after two smoothing iterations. Consid-
ering vertices connected by diagonal edges in the umbrella
operator (left) results in a less symmetric smoothing com-
pared to our variant (right).

4. Volume constraint

After the tetrahedral mesh has been computed each vertex
of the mesh gets assigned a particle. The dynamic state of
a particle is defined by its mass m, its position p(t) and its
velocity v(t). Each cell consisting of five tetrahedrons gets
assigned a volume constraint. The volume constraint con-
sists of a volume preserving part and 16 springs which are
introduced as external forces. On each edge of the cell and
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over the diagonals springs are placed as depicted in Figure 3.
The springs force the cell to preserve its original form while
the volume is recovered during a simulation step. Forcing
only one tetrahedron to conserve its volume could result in
locking as stated in [ISF07]. Using five tetrahedrons at once
gives the model enough freedom for deforming.

Figure 3: The volume constraint with its five tetrahedrons,
eight particles, and 16 springs. The red springs can have
different spring constants from the green ones.

In each simulation step with time step size h the positions
of the particles are integrated according to

vi(t0 +h) = vi(t0)+
∫ t0+h

t0

Fext

mi
dt

pi(t0 +h) = pi(t0)+
∫ t0+h

t0
v(t)dt =: xi (1)

with external forces Fext and masses mi. In order to conserve
the initial volume V0 of a cell the volume V (t +h) must sat-
isfy the constraint

V (t +h)−V0 = 0 . (2)

Thus, impulses for the eight particles of the cell are com-
puted and applied. These impulses are determined by using
a preview of the constraint state. The integrated particle po-
sitions x j,xk,xl and xm from Equation 1 are used in a first
step to compute the integrated volumes

Vi(t +h) =
1
6
(
x j−xm

)
((xk−xm)× (xl−xm)) (3)

of each tetrahedron. The volume V (t + h) of a cell is com-
puted as the sum ∑

5
i=1 Vi(t +h) of the five tetrahedron vol-

umes. Due to the fact, that the integrated volume does not
generally satisfy Equation 2, the particles have to be moved
in a second step. Moving the particles by λ(xi− c) the center
of mass c = 1

8 ∑
8
i=1 xi is conserved while restoring the initial

volume of the cell. Exploiting the fact, that the resulting vol-
ume of a tetrahedron is λ

3Vi(t + h) after the particles have
been moved, the volume of a cell thus is λ

3
∑

5
i=1 Vi(t +h).

With Equation 2 it can be seen that choosing λ = 3
√

V0
V (t+h)

restores the initial volume. Thus, the needed impulses for the
particles are

∆vi =
λ−1
hmi

(xi− c) , (4)

where mi is the mass and ∆vi is the velocity change of parti-
cle i. According to Newton’s second law of motion the con-
servation of momentum has to be guaranteed. Equation 4
holds this property if the masses of each particle are equal,
because

8

∑
i=1

λ−1
hm

(xi− c) =
λ−1
hm

8

∑
i=1

(
xi−

1
8

8

∑
j=1

xj

)
= 0 .

We check the sign of Equation 3 while enforcing the volume
constraint to avoid inverting a tetrahedron. If the sign of the
volume of one tetrahedron is negative, we simply halve the
time step size h as long as no volume is negative and then
compute the constraint with the new time step size. In gen-
eral this problem only occurs, if a tetrahedron is not well
shaped or very strong external forces are involved.

The impulse-based simulation corrects the constraints it-
eratively until all constraints are satisfied. This process con-
verges to the physical correct solution as shown in [SBP05].
Collision handling was also integrated using the impulse-
based method as described in [BS06].

5. Results

The presented tetrahedral model generation and volume con-
straint was implemented in C++. In each simulation step the
volume of the deformable body is conserved. The impulse-
based dynamic simulation also allows interaction between
deformable bodies and rigid bodies. Figure 4 shows two an-
imations where a rigid sphere collides with a deformable
cube. In the first case we have used strong springs to disal-
low strong deformations of the body. The second case shows
the same animation where the diagonal spring constants of
the cells were set to a low value. Thus, a more flexible de-
formation was possible.

6. Conclusion

In this paper a new method for simulating deformable bod-
ies with an impulsed-based approach was presented. The
tetrahedral model generation algorithm produces volumet-
ric models even when no enclosed volume is defined. The
parameters of the algorithm let the user interactively define
different resolutions and appearances of the resulting model.
Due to the special smoothing we obtain symmetrical models
which are important for symmetric deformations. The tetra-
hedral model is used for the simulation while the original
triangle mesh can be used for the visualization. Taking care
in the smoothing process, that the resulting tetrahedrons do
not get too small and are well shaped, makes the inversion of
a tetrahedron unlikely, resulting in shorter simulation times
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due to bigger adaptive time step sizes. The springs define
the stiffness of the deformable bodies resulting in different
behaviors of the deformations.

Figure 4: Two animations of a deformable body (top to bot-
tom): The diagonal springs on the right side are weaker re-
sulting in a more flexible deformation.
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