
Exact Computation of the Hausdorff Distance
between Triangular Meshes

Raphael Straub

Universität Karlsruhe (TH), Karlsruhe, Germany

Abstract
We present an algorithm that computes the exact Hausdorff distance between two arbitrary triangular meshes.
Our method computes squared distances for each point on each triangle of one mesh to all relevant triangles of
the other mesh yielding a continuous, piecewise convex quadratic polynomial over domains bounded by conics.
The maximum of this polynomial is the one-sided Hausdorff distance from one to the other mesh. We ensure the
efficiency of our approach by employing a voxel grid for searching relevant triangles and an attributed half-edge
data structure for representing the squared distance function.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Geometric algorithms,
languages, and systems, I.3.5 [Computer Graphics]: Boundary representations, I.3.5 [Computer Graphics]: Com-
putational Geometry and Object Modeling

1. Introduction and Previous Work

The Hausdorff distance is a very intuitive and therefore com-
monly used distance measure between two subsets A and B
of a metric space. It can be defined by means of the one-sided
Hausdorff distance:

dH′(A,B) := max
p∈A

min
q∈B
‖p−q‖ .

The norm ‖ · ‖ in this definition can be any norm, but com-
monly the Euclidean norm ‖ · ‖2 is meant, as in this paper.
Note that the one-sided Hausdorff distance is not symmetric.
To transform it into a symmetric distance, the maximum of
the two one-sided Hausdorff distances is taken which yields
the Hausdorff distance:

dH(A,B) := max{dH′(A,B),dH′(B,A)} .

This distance can be used for comparing two meshes.
Probably, one of the first known mesh comparison tools is
Metro [CRS98]. Metro samples one mesh uniformly or ran-
domly and computes distances from sampled points to the
other mesh to approximate the one-sided Hausdorff distance.
The search of the closest point on the second mesh is ac-
celerated by a uniform cell grid. In [ASCE02] Aspert et al.
present a similar method based on regular sampling. Their
tool Mesh also uses a uniform grid to speed up the closest

triangle search. This grid is implemented in a memory effi-
cient way, thus its memory footprint is smaller and it is faster
than Metro. Guthe et al. [GBK05] use adaptive subsampling
to accelerate the computation of approximate Hausdorff dis-
tances, especially for higher accuracies. A triangle of one
mesh is subdivided only if its distance to the other mesh
can exceed the current one-sided Hausdorff distance approx-
imate. In addition, an octree voxel grid for efficiently finding
nearest neighbors is used. In [Lla05], a randomized algo-
rithm for finding the maximum distance from a finite point
set to an arbitrary compact set is presented. This method is
adapted for computing the exact Hausdorff distance between
convex polyhedra. The main drawback of this method is that
it is inapplicable for non-convex meshes, which are common
in practical applications.

One area of application for Hausdorff distances is quality
control for mesh simplification algorithms. Many mesh sim-
plification algorithms, like in [HDD∗93,RB93,GH97], allow
no or only indirect control over the maximum Hausdorff dis-
tance between the original and the simplified mesh. In con-
trast, Klein et al. show in [KLS96] how to decide whether a
mesh simplification step would exceed a user defined limit
on the Hausdorff error and therefore should be rejected.

In this paper, we present an algorithm that computes
the exact Hausdorff error between two arbitrary triangular



R. Straub / Exact Computation of the Hausdorff Distance between Triangular Meshes

meshes. The key advantage over previous work is that the
computation is done analytically, i. e., without any sampling,
and therefore always gives an exact result. The explicit com-
putation of the Hausdorff distance is possible due to the sim-
ple structure of the considered objects, which are piecewise
linear. To accelerate our method, we use voxel grid tech-
niques similar to the ones described in [CRS98, ASCE02,
GBK05].

2. Basic Overview

Let M = T1∪ . . .∪Tn and M′ = T ′1 ∪ . . .∪T ′m be two triangu-
lar meshes with triangles Ti = [ai,bi,ci] defined as the con-
vex hull, denoted by [·], of its corners. Then the one-sided
Hausdorff distance between these meshes can be computed
by regarding distances between points on their triangles:

dH′(M′,M) = max
p∈M′

min
q∈M
‖p−q‖

= max
T ′∈{T ′

1 ,...,T ′
m}

max
p∈T ′

min
T∈{T1,...,Tn}

min
q∈T
‖p−q‖︸ ︷︷ ︸

=: dT (p)︸ ︷︷ ︸
=: d(p)

. (1)

Obviously, it is sufficient to compute the maximum value
of the distance function d for each triangle T ′ of the first
mesh M′ and take the maximum of these values. For each
T ′, d can be computed as the minimum of all dT , T ∈
{T1, . . . ,Tn}.

Let T = [a,b,c] be a triangle of M. In the following, we
consider only the squared distances d2

T instead of the dis-
tances dT in order to simplify notation and computation. We
subdivide the plane of T ′ into seven regions, where each re-
gion contains either the points p closest to the interior of T
or closest to one of the edges or one of the corners of T , see
Fig. 1. These regions are the Voronoi regions of T , its edges,
and its corners, restricted to the plane of T ′. They may be
empty and are obtained by projecting T and six half-lines
emanating from the three corners orthogonally to one of the
two adjacent edges into the plane of T ′, where the projection
direction is orthogonal to T .

Clearly, d2
T is a continuous function that is quadratic over

each of these seven regions:

d2
T (p) =



(
det[p−a b−a c−a]
‖(b−a)× (c−a)‖

)2

if p ∈ Rabc(‖(p−a)× (b−a)‖
‖b−a‖

)2

if p ∈ Rab

...
‖p−a‖2 if p ∈ Ra

...

.

The quadratic functions d2
T consists of are non-negative and

a

b

c

T ′

Ra

Rb

Rc

Rab

Rac

RbcRabc

T

a−b

Figure 1: The triangle T is projected perpendicularly to T
into the plane of T ′ dividing it into seven distinct regions
Rabc, Rab, Rbc, Rac, Ra, Rb, and Rc. The boundaries of the
regions Ra, Rb, and Rc lie on planes through the corners
of T each perpendicular to one of the two adjacent edges
of T . For example, the boundary between Ra and Rab lies on
the plane through a perpendicular to a−b.

therefore they are convex, since non-negative quadratic func-
tions are either constant or represent convex parabolic cylin-
ders or elliptic paraboloids. All other types of quadrics do
not represent functions at all or only functions with negative
values.

Now, to obtain d2 (cf. Equ. (1)) we have to compute the
minimum of the d2

Ti
(i = 1, . . . ,n) over T ′. The minimum of

two functions d2
Ti

and d2
Tj

is piecewise quadratic, where the
domains of the quadratic pieces are bounded by the bound-
aries of the regions shown in Fig. 1 and the conics given by
the equation

d2
Ti(p) = d2

Tj (p) or d2
Ti(p)−d2

Tj (p) = 0 .

These domains are the intersections of the Voronoi regions
of all triangles, edges, and vertices of M (cf. [Mil93])
with T ′. Since a convex function reaches its maximum at
the boundary of its domain, the squared distance function
d2 = minn

i=1 d2
Ti

has its maximum on one of these conics or
line segments. Figure 2 shows the graph of a squared dis-
tance function for two triangles.

Once the maximum of d2 on the boundaries of its domains
is computed, the maximum of these values for all triangles
T ′1 , . . . ,T ′m is the one-sided Hausdorff distance dH′(M′,M).
Algorithm 1 gives a basic overview of the complete algo-
rithm for the one-sided Hausdorff distance. Finally, to obtain
the wanted Hausdorff distance, the other one-sided Haus-
dorff distance dH′(M,M′) can be determined analogously.



R. Straub / Exact Computation of the Hausdorff Distance between Triangular Meshes

d2(p)

pT ′

T1
T2

Figure 2: The graph of the piecewise quadratic squared dis-
tance d2 to two triangles T1 and T2 over a triangle T ′. The
red and yellow parts of the graph belong to the points that
are nearest to T1 and T2, respectively. The projections of T1
and T2 into the plane of T ′ are depicted in gray.

Algorithm 1 Computation of the one-sided Hausdorff dis-
tance dH′({T ′1 , . . . ,T ′m},{T1, . . . ,Tn})

1: d2
H′ := 0

2: for all T ′ ∈ {T ′1 , . . . ,T ′m} do
3: d2 :=∞
4: for all T ∈ {T1, . . . ,Tn} do
5: compute d2

T by projecting T into T ′
6: d2 := min{d2,d2

T }
7: end for
8: d2

H′ := max
{

d2
H′ , max

p∈T ′
d2(p)

}
9: end for

10: return
√

d2
H′

3. The Algorithm in Detail

In this section, we explain how our one-sided Hausdorff dis-
tance computation can be implemented. Especially, we go
into the details of the squared distance function computation
and the selection of relevant triangles.

3.1. Computing the Squared Distance Function

We store the squared distance functions d2 in a half-edge
data structure (cf. [BSBK02]), which is commonly used for
meshes. Here, the edges of the mesh represent the conic
boundaries of the domains and the faces represent the do-
mains. Hence, the edges have the equation of the boundary
conic and the faces the equation of d2 in the correspond-
ing domain as attributes. This attributed mesh data structure
enables us to split and merge faces and to find adjacent do-
mains in constant time.

The squared distance function d2 over a triangle T ′ is

the minimum over all squared distance functions d2
T (T ∈

{T1, . . . ,Tn}). As this minimum is computed incrementally
over all relevant triangles T (cf. line 6 in Algorithm 1), we
assume in the following that we already have a squared dis-
tance function d2 in our attributed mesh data structure. Our
goal is now to insert the distance function d2

T of a new tri-
angle T into our data structure so that it represents the mini-
mum of d2 and d2

T .

The projection of T into T ′ divides the attributed mesh
into at most seven regions (cf. Fig. 1). For each domain, d2 is
compared to the new distance function d2

T for all overlapping
regions by computing the conic Q(p) := d2(p)−d2

T (p) = 0.
This conic is then trimmed by the boundaries of the do-
main and the corresponding region. The remaining part of
the conic, if existent, yields a new edge and the region of
all p where Q(p) > 0, i. e., d2

T (p) < d2(p), yields a new face
in the domain mesh. Potential resulting adjacent faces where
d2 is the same polynomial can be merged subsequently.

As the global maximum of the squared distance func-
tion d2 over T ′ is achieved on the boundary of a domain, this
maximum is the maximum of all local maxima on the edges
and the values of d2 at the vertices of the domain mesh. To
determine the local maxima on the edges we parameterize d2

over each of its boundary conics Q(p) = 0 by using a rational
quadratic parameterization f : R→ R3, Q(f(t)) = 0 (t ∈ R)
of Q (cf. [Far95, pp. 61f]). The resulting parameterization
d2(t) := d2(f(t)) is a rational quartic polynomial in t whose
local maxima can be computed in a straightforward manner.

3.2. Selecting Relevant Triangles

Our main algorithm consists of two nested loops (cf. lines 2
and 4 in Algorithm 1) over all triangles of the meshes M′
and M. We should avoid computing the squared distance
functions d2 for all pairs of triangles of M′ and M as the
number of triangles in each mesh can exceed some millions
and the computation of d2 will become time-consuming.

Since for each triangle T ′ ⊆ M′ we are only interested
in the distance to the nearest triangles T ⊆M, we start pro-
jecting near triangles into T ′ and stop as soon as we are sure
that all other triangles of M are too far away to change d2. To
speed up this process we use a voxel grid as a spatial search
structure. In a preprocessing step all triangles of M and M′
are inserted into all voxels they intersect, where each voxel
has two lists, one for the triangles of each of the two meshes.

The size of the voxel grid is determined by the size l×
w× h of the bounding box of M ∪M′ and the number n +
m of triangles. Assuming that the voxels are approximately
cubical with edge length a and that all triangles have the
same size and are equally distributed on the surface of the
bounding box, we have

k =
a2(n+m)

2(lw+ lh+wh)



R. Straub / Exact Computation of the Hausdorff Distance between Triangular Meshes

triangles per voxel. In practice, we select, e. g., k = 1 and
compute the corresponding approximate size a of the voxels
through the equation above.

The selection of relevant triangles T for which to com-
pute the squared distance function d2

T starts with one trian-
gle of M in the voxel nearest to one voxel of T ′. The nearest
voxel is found using a breadth-first search strategy starting
with the voxels of T ′. In each iterative step, after the update
of the squared distance function d2 (cf. line 6 in Algorithm 1)
the maximum dmax := maxp∈T ′ d2(p) is computed. For all
following steps only triangles T in voxels that have at least
one point nearer than dmax to a point in a voxel of T ′ are
considered. All other triangles are farther than dmax away
from T ′, so they do not contribute to the minimum of all d2

Ti
.

4. Conclusion and Future Work

The algorithm presented in this paper computes the exact
Hausdorff distance between triangular meshes. An imple-
mentation and subsequent tests on real world examples are
planned for the future. It is obvious that our method can
be easily employed for arbitrary piecewise linear surfaces,
as it does not make use of the mesh connectivity and non-
triangular meshes can be triangulated before. A straightfor-
ward extension of our method would be to compute the mean
squared distance by taking the integral of the squared dis-
tance function over a triangle divided by its area.

5. Acknowledgments

We would like to thank Raphael Diziol for creating the vi-
sualization of the squared distance function and Bertrand
Klimmek for proof-reading this paper.

References

[ASCE02] ASPERT N., SANTA-CRUZ D., EBRAHIMI T.:
Mesh: Measuring errors between surfaces using the Haus-
dorff distance. In Proceedings of the IEEE International
Conference on Multimedia and Expo (ICME) (2002),
vol. 1, pp. 705–708.

[BSBK02] BOTSCH M., STEINBERG S., BISCHOFF S.,
KOBBELT L.: Openmesh – a generic and efficient poly-
gon mesh data structure. In OpenSG Symposium (2002).

[CRS98] CIGNONI P., ROCCHINI C., SCOPIGNO R.:
Metro: Measuring error on simplified surfaces. Computer
Graphics Forum 17, 2 (1998), 167–174.

[Far95] FARIN G. E.: NURB Curves and Surfaces. A K
Peters, Wellesley, MA, 1995.

[GBK05] GUTHE M., BORODIN P., KLEIN R.: Fast and
accurate Hausdorff distance calculation between meshes.
In Proceedings of the 13th International Conference in
Central Europe on Computer Graphics, Visualization and
Computer Vision (WSCG) (2005), pp. 41–48.

[GH97] GARLAND M., HECKBERT P. S.: Surface simpli-
fication using quadric error metrics. In Proceedings of the
24th annual conference on Computer graphics and inter-
active techniques (1997), pp. 209–216.

[HDD∗93] HOPPE H., DEROSE T., DUCHAMP T., MC-
DONALD J., STUETZLE W.: Mesh optimization. Com-
puter Graphics 27 (1993), 19–26.

[KLS96] KLEIN R., LIEBICH G., STRASSER W.: Mesh
reduction with error control. In IEEE Visualization ’96
(1996), Yagel R., Nielson G. M., (Eds.), pp. 311–318.

[Lla05] LLANAS B.: Efficient computation of the Haus-
dorff distance between polytopes by exterior random cov-
ering. Computational Optimization and Applications 30,
2 (2005), 161–194.

[Mil93] MILENKOVIC V.: Robust construction of the
Voronoi diagram of a polyhedron. In Proceedings of the
Fifth Canadian Conference on Computational Geometry
(Aug. 1993), Lubiw A., Urrutia J., (Eds.), pp. 473–478.

[RB93] ROSSIGNAC J. R., BORREL P.: Multi-resolution
3d approximations for rendering complex scenes. In Ge-
ometric Modeling in Computer Graphics (1993), Falci-
dieno B., Kunii T. L., (Eds.), Springer Verlag, pp. 455–
465.


