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A general technique to build piecewise polynomial Gk surfaces of degree O(k) is well-known.
However, explicit constructions of regular parametrizations for arbitrarily high smoothness order
k have not yet been presented for triangular patches. This is done in this paper, where we introduce
box and half-box spline surfaces with multiple extraordinary control points.
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1. INTRODUCTION

Smooth free form surfaces are commonly built from polynomial patches. In par-
ticular, subdivision provides a powerful method to generate free form surfaces. A
subdivision surface is defined as the limiting surface of a mesh sequence. In gen-
eral, subdivision surfaces need not be polynomial as for example the butterfly-
and

√
3-subdivision surfaces [Dyn et al. 1990; Kobbelt 2000], but many well-known

subdivision algorithms are derived from regular box spline subdivision algorithms.
Their limiting surfaces consist of infinitely many polynomial patches. For example,
the midpoint schemes [Prautzsch 1998; Zorin and Schröder 2001] which include the
Doo-Sabin, the Catmull-Clark and the Qu-Algorithm [Doo and Sabin 1978; Cat-
mull and Clark 1978; Qu 1990] are based on the Lane-Riesenfeld algorithm [Lane
and Riesenfeld 1980] for uniform tensor-product splines. Loop’s algorithm [Loop
1987] is based on the subdivision algorithm for quartic box splines [Prautzsch 1984].

Box spline based subdivision can also be understood as a process by which more
and more polynomial patches are added to an initial box spline surface defined by
a mesh being subdivided. The initial surface consists of finitely many patches and
has holes associated with the irregularities in the mesh. Under subdivision such
a hole is filled with infinitely many patches surrounding a so-called extraordinary
point.

While subdivision is elegant and simple, subdivision surfaces typically suffer from
shape artifacts [Karciauskas et al. 2004; Peters and Reif 2004] and it has been shown
[Reif 1996; Prautzsch and Reif 1999] that generating smoother subdivision surfaces
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with second or higher order smoothness at the extraordinary points cannot be as
simple and elegant. Therefore, other methods are preferred to fill n-sided holes in
piecewise polynomial spline surfaces.

The construction by Hahn [Hahn 1989] is one of the oldest. There, the surfaces
are piecewise polynomial of degree O(k2). More recently, Reif presented singularly
parametrized Gk surfaces with polynomial degree 2k + 2, see [Reif 1998]. Simulta-
neously, the same technique was used to construct regular Gk surfaces of the same
degree 2k + 2 in [Prautzsch 1997]. Further improvements were made in [Peters
2002].

So far, the construction in [Prautzsch 1997] and also in [Peters 2002] has been
outlined only for k = 2. In this paper, we show that these ideas can be extended to
construct hole fillings for three direction box and half-box splines of any smoothness
order k. The polynomial degree of our fillings is max{4k+1, d 3

2
k+1er}, where r ∈ N

can be chosen arbitrarily. The number r controls the flexibility at the extraordinary
point, i.e. the filling consists of a reparametrized, split and modified polynomial of
degree r. A crucial point is the construction of a parametrization for the filling
polynomial. We present two different parametrizations. The first is singular in
analogy to the parametrization for quadrilateral patches in [Reif 1998]. We show
that this singular parametrization is a special degenerate parametrization from a
class of regular parametrizations we present second.

2. BOX SPLINE SURFACES

The symmetric box splines of order m over the triangular grid spanned by [1 0]t,
[0 1]t, [−1 − 1]t are C2m continuous, and they are piecewise polynomial of degree
3m + 1 on each triangle of the grid. The grid is shown in Figure 1. We are using
only these box splines since we need their symmetries.
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Fig. 1. A regular triangular grid.

In particular, let B0(u) be the piecewise linear box spline over this triangular
grid defined by

B0(i) =

{

1, if i = 0

0, if i ∈ Z
2\{0}
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and let

Bm(u) = B0(u)∗ m. . . ∗B0(u)

be the m-fold convolution of it. A linear combination of these basis functions Bm(u)

s(u) =
∑

i∈Z2

ciBm(u − i)

forms a box spline surface of order m. The control net of s(u) is a regular trian-
gular net with the vertices ci. Any triangle of this net with the next m rings of
surrounding triangles is called a B-primitive of order m, see Figure 2. Every B-
primitive determines one triangular polynomial patch of s(u), see [Prautzsch and
Boehm 2002].

Fig. 2. A B-primitive of order 2, schematically.

By definition, a box spline surface has a regular control net. With the symmetric
box splines Bm(u) it is possible to extend this definition. Here, in this paper a box

spline surface of order m with an arbitrary, i.e., not necessarily regular triangular
net, consists of the patches defined by all B-primitives of order m contained in the
net. For simplicity, we only consider nets without boundary. Then all vertices with
valence n 6= 6 are irregular. If all irregular vertices are surrounded by at least 2m
rings of regular vertices, each of them corresponds bijectively to an n-sided hole in
the box spline surface. Figure 3 shows a box spline surface of order 2 and its control
net. Note that it is impossible to define box spline surfaces with b-primitives that

Fig. 3. A box spline surface of order 2 (right) and its control net (left).
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are not symmetric if the control net has irregular vertices.
The “size” of an n-sided hole in a box spline surface s(u) depends on the order

m. The hole boundary is formed by n · m patches of s(u), where we do not count
patches with only one corner on the hole boundary. We wish to fill these holes
smoothly and first show how to reduce their size. The k-ring of a vertex c consists
of all vertices that are not further away from c than k edges, i.e. it consists of c

and the next k rings of vertices around it. In particular, the 0-ring of c sonsits only
of c and a (−1)-ring is empty. Let k ≤ m and let the k-ring of any irregular vertex
coalesce into one multiple vertex as shown in Figure 4.

Fig. 4. An irregular vertex as a multiple vertex for k = 1.

Further, we treat irregular vertices specially. To explain how, it suffices to con-
sider a net with one irregular vertex of valence n 6= 6. This net consists of n
regular net segments C1, . . . , Cn that are topologically equivalent to a regularly
subdivided cone, as shown by heavy lines in Figure 5 left. We count periodically,
i.e., Ci = Ci+n, and assume that Ci is adjacent to Ci+1.

Fig. 5. A net segment Di (left) and the associated box spline surface di for order m = 2 and
k = 1 (right), schematically.

To get to the surface, we momentarily remove the (m−k−1)-ring of the irregular
vertex. What remains of one segment Ci is equivalent to an obtuse cone. Then,
we add to the remains of Ci the next m layers of control points (and thus also
re-insert the points momentarily removed). Finally, we replace the irregular k-ring
by a regular degenerate k-ring at the same position such that we obtain a regular
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net Di as shown schematically in Figure 5 left. The net Di defines a box spline
surface di(u) of order m as shown in Figure 5 right.

Since Di and Di+1 are part of a regular net, di(u) and di+1(u) have a C2m joint.
Consequently, d1(u), . . . ,dn(u) form a C2m surface with a hole whose boundary is
formed by n(m−k) patches. We call it a b-surface of type mk, short a bmk-surface.

If n < 6, we obtain a kmk-surface in exactly the same fashion. However, the net
segments Di have coalescing vertices in this case and are not just simple subsets of
the entire net. Therefore, it is easier to see what happens if we double the net and
view it as a two-sheeted net winding around the irregular vertex twice. Thus, the
valence of the irregular vertex is doubled and as above, we obtain a bmk-surface.
The surface has two sheets winding around its hole twice. Removing the extra
sheet, we finally obtain a bmk-surface with an n-sided hole.

Note that a bmm-surface has no holes. Its derivatives up to order 2m are zero at
extraordinary points, but, in general, it is not a C2m-manifold. Since a bmm-surface
is subdividable, we can conclude from [Prautzsch and Reif 1999] that vicinities of
extraordinary points have regular C2m parametrizations only if they are planar.
Also note that a generic bmk-surface with k < m has no singularities unless the
control net further degenerates.

In the following, we assume that we have a given bmk-surface, where k = m − 1
or k = m − 2. It is our goal to show that the holes of this surface can be filled
smoothly for arbitrary high orders m.

3. FILLING HOLES IN BOX SPLINE SURFACES

Let r ≥ 2 be an arbitrary integer and consider an n-sided hole of a bmk-surface,
where k = m− 1 or k = m− 2. The hole can be filled smoothly with 4n triangular
patches of degree max{(3m + 1)r, 8m + 1} obtained from a best filling polynomial
of degree r that we reparametrize, split and modify. The construction is based on
the ideas introduced in [Prautzsch 1997; Prautzsch and Umlauf 2000].

To describe it, we need what we call a pre-Cp joint. Let aijk and bijk be the
Bézier points of two triangular patches a and b, respectively. Let a0jk = b0jk . The
patches a and b have a pre-Cp joint along the corresponding boundary curve if aijk

and bijk for i ≤ p and (j ≤ 2p or k ≤ 2p) are as if a and b had a Cp joint.

Construction 3.1.

First, we construct a planar, piecewise polynomial n-sided macro patch x(u) of
degree 3m + 1 consisting of 4n triangular patches xi(u) with C2m joints except
between the inner patches x1, . . . ,xn, see Figure 6. For symmetry reasons, we
construct xi,xi+n,xi+2n and xi+3n to be a rotation of x1,x1+n,x1+2n and x1+3n

by i
n
2π, respectively. The details are given in Section 4.

Second, let q(u) be polynomial of degree r and let

pi(u) = q(xi(u)), i = 1, . . . , 4n.

The C2m joints of the patches xi(u) are carried over to the patches pi(u). Note
that pi is of degree (3m + 1)r.

If q(x) is determined appropriately, then the n-sided surface p formed by the pi

lies “in” the n-sided hole of the bmk-surface, but we need to modify the boundary
of p to obtain a C2m joint with the bmk-surface. Locally, the bmk-surface is a box
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Fig. 6. The patches xi schematically.

spline surface which can be extended into the hole by further patches. This means
that we can change any patch pi, i ≥ n + 1, such that it has a C2m joint with the
bmk-surface and even such that it has a pre-C2m joint with any adjacent patch pj .
The Bézier points not involved in the pre-C2m joints can be changed so as to obtain
full C2m joints, see e.g. [Prautzsch et al. 2002].

Thus, for the modified patches pi(u), some Bézier points depend on q(x), some
depend on the bmk-surface and some are constrained by the C2m joints between
the pi(u). All other Bézier points can be chosen arbitrarily. These points together
with q(x) can be determined such that the pi(u) minimize a fairness functional
like thin plate energy or other functionals involving higher order derivatives.

Next, we present two different parametrizations x(u).

4. A SINGULAR PARAMETRIZATION FOR THE FILLING

First, we present a singular parametrization xb = x of degree 3m + 1. It has
similar properties as the parametrization used in [Reif 1998]. The map xb(u) is
a bmm-surface controlled by an (m + 2)-ring. The n(m + 2) boundary control
points lie equally spaced on a regular planar n-gon and similarly the next ring of
control points while all other points lie at the center as illustrated in Figure 7. The
boundary triangles are isosceles triangles with vertex angle 2π/n.

Theorem 4.1. The map xb(u) is injective and, except for its center point, reg-
ular.

Proof. It suffices to consider the patch x1(u). We choose the multiple control
point as the origin and the symmetry axis of x1(u) as the v-axis of the coordinate
system as shown in Figure 7. We assume that the triangle [0 0]t, [1 1]t, [0 1]t is
the parameter domain of x1(u), see Figure 1. The partial derivatives ∂

∂u
x1 and

(

∂
∂u

+ ∂
∂v

)

x1 are controlled by certain edge directions of the control net. We call
these the u- and uv-directions.

Any real interval I of angles defines a pointed cone

Ic =

{

r

[

cosϕ
sin ϕ

]
∣

∣

∣

∣

r ≥ 0, ϕ ∈ I

}

.
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Fig. 7. The control net of a singular parametrization xb for n = 5 and m = 3.

The u-direction of all u-edges in the left half-plane u ≤ 0 lie in the cone

A =

{

(π
n
− π

2
, 0]c , if n ≥ 6

(π
n
− π

2
, 3π

n
− π

2
)c , if n ≤ 5

(1)

and the uv-directions of all uv-edges starting in the half-plane u ≤ 0 lie in the cone

B =

{

[ 2π
n

, π
2

+ π
n
)c , if n ≥ 4

[π
2
, 5

6
π)c , if n = 3.

Subdividing the control net (with the scaling factor 2) means that edge directions
are halved and averaged by Boehm’s mask shown in Figure 8. These operations
preserve the cone properties above if all directions averaged lie in A or B. Because of
symmetry, the u-edges crossing the v-axis are perpendicular to this axis before and
after subdivision. This implies that the directions of uv-edges starting at the v-axis
lie in B (and the half-plane u ≤ 0) before and after subdivision. Thus, in summary,
subdivision preserves the cone properties which implies that the derivatives ∂

∂u
x1

and
(

∂
∂u

+ ∂
∂v

)

x1 lie in A and B, respectively. Because of the non-zero control
edges, the derivatives are non-zero except at 0. Therefore, we can argue as in
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Fig. 8. Boehm’s mask.

[Umlauf 2004] and show that the “left” part of x1(u, v), where v ≥ u and (u, v) 6= 0,
is injective and regular. Due to symmetry x1(u) is injective and regular for all
u 6= 0.

Further, x1(u, v) = x1(0) implies x1(u, v) = x1(v, u) since x1(0) = 0 lies on the
symmetry axis of x1. Because of injectivity, we obtain u = v. Since the half open
line segment (0, (1/2, 1/2)] is mapped injectively into the v-axis, the continuous
map x1 is also injective on the closure. Hence, 0 is the only point mapped onto 0

under x1, which concludes the proof.

5. A REGULAR PARAMETRIZATION FOR THE FILLING

Second, we present a regular parametrization x of degree 3m+1. It is a modification
of the singular parametrization in Section 4.

Let x be as in Section 4 and let xijk , i+ j +k = 3m+1 = d, be the Bézier points
of x1(u) such that xd00 = x1(0) = 0, x0d0 = x1(0, 1) and x00d = x1(1, 1) are the
corner points. We change the points xijk for i < d by

xijk :=
ε

d
(j x0d0 + k x00d)

where ε > 0.

Lemma 5.1. The map x1 is regular and injective for sufficiently small ε.

Proof. The curve a(v) = x1(αv, v), α ∈ [0, 1/2] has the Bézier points

ai =

{

(1 − α)xd−i,i,0 + αxd−i,0,i , i < d
x1(α, 1) , i = d.

Hence,

∆ai ∈
(π

2
− δ,

π

2
+

π

n
+ δ

)

c

with δ depending on ε and lim
ε→0

δ = 0. The cross derivative curve ∂
∂u

x1(αv, v) has

the Bézier points

bi =

{

ε(x00d − x0d0) , i < d − 1
∂

∂u
x1(α, 1) , i = d − 1.

For α ≤ 1/2, these points lie in the cone A, see (1). It is straight forward to
conclude from these estimates that x1 is regular and injective for sufficiently small
ε.
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Changing also x2, . . . ,xn in a similar fashion we obtain a regular and injective map
x.

Fig. 9. The control net of the outer patches xn+1, . . . ,x4n for m = 2.

Remark 5.2. In the construction above, the outer patches xn+1, . . . ,x4n are
determined by a control net as shown in Figure 7. Instead, we could also use a
control net as shown in Figure 9. Then, it seems possible to construct x1, . . . ,xn

as regular injective maps with C2m contact to the outer patches xn+1, . . . ,x4n. For
m = 1 this is done in [Prautzsch and Umlauf 2000]. For m = 2 and n = 5 the
Bézier points are shown in Figure 10.

6. HALF-BOX SPLINE SURFACES

A bmk-surface has even smoothness order. To obtain similar surfaces with odd
smoothness orders, we are using symmetric half-box splines. In this section, we
recall the definition of half-box splines and in the next section, we show how to fill
a hole in a half-box spline surface in analogy to the construction for bmk-surfaces.

The piecewise constant half-box splines over the triangular grid shown in Figure
1 are translates of the two functions

H4
0 (u) =

{

1, if u ∈ 4
0, else

and H
5

0 (u) =

{

1, if u ∈ 5
0, else

,

where 4 and 5 are the two triangles

4 := {u | 0 ≤ u ≤ v < 1} and 5 := {u | 0 ≤ v < u < 1}
which form a partition of the unit square. A convolution with the box spline Bm(u)
gives the symmetric half-box splines

H4
m (u) = H4

0 (u) ∗ Bm(u) and H
5

m (u) = H
5

0 (u) ∗ Bm(u)
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Fig. 10. The Bézier points of the inner patches x1, . . . ,xn for m = 2.

of order m. They are C2m−1 continuous and polynomial of degree 3m on each
triangle of the grid. We use them to build a half-box spline surfaces

s(u) =
∑

i∈Z2

(

c
4
i

H4
m (u − i) + c

5
i H

5
m (u − i)

)

of order m. The control net of s(u) is a regular hexagonal net with the vertices c
4
i

and c
5
i

. Any vertex of this net with the next m rings of surrounding hexagons is
called an H-primitive of order m, see Figure 11. Every H-primitive determines one
triangular polynomial patch of s(u), see [Prautzsch and Boehm 2002].

Fig. 11. An H-primitive of order 2, schematically. It is dual to the dotted B-primitive of order 2.
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Half-box spline surfaces can be generalized in analogy to box spline surfaces. For
this we are using a duality. A net N and a triangular net T are called dual if there
is a one-one correspondence between the vertices of N and the faces of T such that
vertices with a common edge correspond to faces with a common edge and vice
versa. If two triangles in T coincide, their dual vertices in N also coincide. Under
this definition, H-primitives of order m are dual to B-primitives of order m. In
particular, if the vertices of N are the centroids of their dual triangles in T , we call
N the centroid net of T .

A general half-box spline surface of order mk, short an hmk-surface, has a control
net N that is dual to the control net of a bmk-surface. It consists of all patches
determined by the H-primitives in N that are dual to the B-primitives in T . Thus
an hmk-surface is piecewise polynomial of degree 3m and 2m−1 times continuously
differentiable.

As in Section 2, an hmm-surface has no holes. Its derivatives up to order 2m− 1
are zero at extraordinary points, but, in general, it is not a C2m−1-manifold.

7. FILLING HOLES IN HALF-BOX SPLINE SURFACES

Let r be an arbitrary integer and consider an n-sided hole of an hm,k-surface, where
k = m−1 or k = m−2. The hole can be filled smoothly with 4n triangular patches
of degree max{3mr, 8m−3} in complete analogy to Section 3. Below, we show how
to “dualize” the singular and the regular parametrizations x(u) given in Sections
4 and 5.

7.1 A singular parametrization for the filling

Let map xh(u) be the hmm-surface controlled by the centroid net of the control net
of xb(u) given in Section 4, see Figure 12. It is a singular parametrization to fill
the hole of a hmk-surface by Construction 3.1.

Theorem 7.1. The map xh(u) is injective and, except for its center point, reg-
ular.

Proof. The control vectors of the derivative ∂
∂u

xh form the centroid net of the

control net of ∂
∂u

xb and similarly for the derivative
(

∂
∂u

+ ∂
∂v

)

xh. This hexagonal
centroid net can be split into two triangular nets, see [Prautzsch and Boehm 2002].
Subdividing the hexagonal net means to duplicate its vertices and to average each
triangular net using Boehm’s mask shown in Figure 8. Therefore, we can continue
exactly as in the proof of Theorem 4.1. This will prove this theorem also.

7.2 A regular parametrization for the filling

As shown in Section 5, we can change the singular parametrization xh above into
a regular and injective parametrization of the same degree. Again it is possible to
define the outer patches xn+1, . . . ,x4n by a less degenerate control net as seen in
Figure 13. The Bézier net of x1, . . . , xn for m = 2 and n = 5 is shown in Figure 14.

8. CONCLUSION

We have introduced box and half-box spline surfaces with multiple extraordinary
points to minimize the holes of general box and half-box spline surfaces with arbi-
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Fig. 12. The control net of a singular parametrization x for n = 5 and m = 2.

trary triangular control nets. Second, we have proved that the holes can be filled
smoothly with a small number of polynomial patches of low degree. We have pre-
sented two solutions for box spline surfaces, as well as for half-box spline surfaces.
The first solution consists of a singularly and the second of a regularly parametrized
piecewise polynomial filling. It is simple to prove the correctness of the first solu-
tion, but it has the disadvantage of being singular. Therefore, the second solution
should be preferred in practical applications.
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