Abstract

Given objects in boundary representation, i.e. piece-
wise polynomial surfaces, modelling operations such
as union, intersection, and difference, as well as trim-
ming and rounding off for objects of arbitrary shape
are usually be solved approximately. In this paper a
new, simpler approach is introduced. Rather than
working with the polynomial surfaces we use their
control nets or an interpolating net. Thus the mod-
elling operations can be realized on nets. Due to the
widespread field of possible applications various meth-
ods will be discussed.
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1 Introduction

Intersecting and joining objects is a topic often re-
quired and considered in geometric modelling and
computer graphics, since it is an elementary tool for
creating new objects. A well-known example is the
Constructive Solid Geometry (CSG), where one uses
simple basic solids and some modelling operations like
union, intersection, and difference to construct more
complex ones.

With free-form surfaces modelling operations are
difficult to compute and in general can be done only
approximately. In this paper we suggest therefore to
perform modelling operations with nets representing
the surfaces rather then with the surfaces themselves.

Related work:
CSG is a standard technique in computer graphics
and well described in the literature. In the eight-
ies first attempts were made to combine CSG with
free-form surfaces. Either free-form solid primitives
were allowed (cf. [Guo/Menon ’96]) or the mod-
elling operations were extended, e.g. by surface-
solid operations. A well-structured survey is given
in [Varady/Pratt ’84].

However, all these approaches apply the modelling
operations to the free-form surfaces themselves, which
requires sophisticated computations of the curves of
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intersection. The approach of this paper uses net-
representations of free-form surfaces, which in partic-
ular simplifies the computation of the intersection.

The major remaining problem is the merg-
ing of two nets along their intersection. A
similar problem occurs, building triangular nets
from three-dimensional contour lines. In this
field some work is presented in [Choi/Park ’94],
[Christiansen/Sederberg 78], [Ekoule et al. '91],
[Klingert '94], and [Meyers et al. '92], who consider
also branching techniques, but always focus on the
aesthetics of the resulting triangles.

Hardly any work was done, on how to fulfill cer-
tain topological constraints. [Talbert/Parkinson ’90]
try to convert a triangular net into quadrilateral el-
ements, whereas [Joe ’95] tries to create quadrilat-
eral nets within polygonal regions, and [Schreiber *95]
shows a way to improve the topological regularity of
quadrilateral nets.

Definition:

To avoid misunderstandings, a brief explanation
should be given about what is meant by nets. A
net consists of points € R?, called vertices, connected
by edges. Three or more connected vertices, each of
which has exactly two edges to the others, build a
mesh of the net. We assume that every edge con-
tributes to at most two meshes.

Therefore every net is a two-dimensional manifold
and corresponds to a continuous surface.

In particular if each edge contributes to exactly two
meshes, the net has no boundaries. Surfaces of solids
can be represented by such closed nets.

In a regular triangular net each mesh has three
edges and each interior vertex! the valence six,
whereas in a regular quadrangular net each mesh has
four edges and each interior vertex the valence four.
Control nets fulfill such topological constraints with
some extraordinary vertices or meshes.

Overview:

In the following section we discuss how to find the in-
tersection of two nets, in Section 3 we describe how
to connect the desired parts of the nets along the in-
tersection, in Section 4 we show another possibility
for joining two nets by creating connecting meshes,
and demonstrate the results in Section 5. The sixth

L An interior vertex is a vertex, which does not contribute to
a boundary of the net.



section is dedicated to further modelling operations,
i.e. the trimming of nets and the construction of fair
blendings.

2 Intersection

The first step for constructing a combined net out of
two intersecting nets, is to cut off the jutting parts.

This is not straight-forward because we need to
compute the intersections of edges of a net with
meshes of a second net.

In the simplest case the second net consists only
of triangular meshes, the problem reduces to line-
triangle intersections.

In case the second net has non-triangular meshes we
need to compute the intersection of a line and a non-
triangular mesh. This is not well-defined, because the
vertices of a non-triangular mesh do not lie in a plane
in general. Approximating meshes by planes does not
eliminate the ambiguity and causes further problems
due to gaps between the approximating planes of ad-
jacent meshes. Thus we divide each n-lateral mesh
into triangular meshes.

To do so we split an n-lateral mesh with vertices
Pi,---,Pn into n triangular meshes by connecting all
vertices with the centroid = Y7 | p;.

Now the intersections of the edges of the first net
with the meshes of the second net can be calculated,
and vice versa. In the next section we show, how to
connect the required parts of the two nets using these
intersection points.

3 Connecting the points of inter-
section

Before two nets can be cut off at the points of inter-
section and be stuck together to a new net, it has to
be decided which parts of the original nets contribute
to the new net and which parts of the original nets
can be omitted.

Figure 1 demonstrates the various possibilities. The

pear and the cylinder shown in the figure intersect
twice. Thus for the pear as well as for the cylinder the
decision has to be made whether the outer or the inner
parts should be left out leading to the four different
solutions illustrated in the figure.
Remark: If the nets of the pear and of the cylinder are
regarded as the surface representations of two solids?,
the four possibilities realize different modelling oper-
ations like in CSG-systems, namely

2The cylinder needs to be closed by lids.

Figure 1: Decision of removableness

e pear N cylinder
e cylinder \ pear

e pear \ cylinder
e pear U cylinder

Now after the decision of removableness has been
made, an intersection polygon is built by connect-
ing each point of intersection with its (generally two)
“neighbours”. Then cutting off the original net is real-
ized first by adding this polygon to the net as new ver-
tices and new edges, second by connecting the points
of intersection with the not removed vertices of the
intersected edges of the original net, and finally by
throwing away everything that lies beyond the poly-
gon of intersection. Thus the polygon is part of the
boundary of the remaining part of the net.

This has to be done for both nets symmetrically,
leading to a situation of two new nets, which are parts
of the original ones and which should join each other
in an area around the calculated intersection poly-
gons.

Note that the intersection may consist of several
components. For example, the pear and the cylin-
der shown in Figure 1 intersect twice leading to two
intersection polygons for each net. The intersection
polygons of both nets can be paired.

Although both polygons of such a pair represent
similar curves they are not equal in general. Therefore
we merge both polygons to a single polygon, adapt
both nets to that polygon and finally join both nets
along this new polygon.

To merge two polygons we determine a correspon-



dence between their vertices. The merging polygon we
construct is given by the midpoints of corresponding
vertices. Further we insert the vertices of the origi-
nal polygons, that have no correspondence, into the
merging polygon.

Four different types of correspondences have been
constructed, which are illustrated in Figure 2 for two
planar nets intersecting in a straight line.
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Figure 2: The different correspondences lead to differ-
ent results, favouring aesthetic or topological aspects.
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For the first correspondence we try to construct
only short edges and roughly equal angles in every
mesh to obtain visually pleasing nets. Every vertex
corresponds to the closest vertex of the paired polygon
if possible.

For the last correspondence we try to preserve the
topology of the original nets accepting also strange-
looking stretched meshes. It is guaranteed, that every
vertex of the polygon, which contains a lower number
of vertices, corresponds to a vertex of the paired poly-
gon.

For the two other correspondences we try to find
a compromise between the optimization of aesthetics
and the optimization of topological regularity. Topo-
logical considerations are restricted to a local area.
The two methods differ in the size of the area.

For details see [Linsen ’97].

Note that due to the granularity of the nets, irreg-
ularities can not be avoided in general. Hence opti-
mizing the regularity means to minimize the quantity
of extraordinary vertices and meshes.

4 Connecting by meshes

In this section we introduce another possibility for net
connection. Figure 3 sketches, why it may be useful:
If one wants to maintain the topology, inserting the

points of intersection as new vertices might lead to an
unpleasant solution as demonstrated on the left side
of the figure.
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Figure 3: Reason for introducing a new method:
left: Connecting the points of intersection
right: Connecting by meshes

Connecting the nets by constructing new meshes in
the way shown on the right avoids such topological
irregularities.

Remark: Especially when we apply this method to
triangular nets the resulting nets are triangular, too,
whereas by the method of Section 3 non-triangular
meshes are produced frequently.

So for the method of connecting by meshes there is
no need for splitting up meshes into removable and re-
maining submeshes anymore. Instead, all meshes with
any points of intersection are left out completely. Cer-
tainly the meshes, that contribute to the removable
parts of the net, are omitted again. This produces
two new nets with narrow gaps between them. These
gaps characterize the regions, where the original nets
intersect, and can be described by pairs of polygons,
that contain the not removed, adjacent boundary ver-
tices in correct order. These polygons need to be re-
lated, whereby new problems such as branching occur.
Branching means, that one boundary polygon of a net
is related with two or more boundary polygons of the
other net. This has to be solved by splitting up the
single polygon.

After having defined the gaps, they must be closed
by new meshes. Figure 4 shows three possibilities for
triangular meshes.

The triangular topology can always be maintained.
In addition, in method (a) the lengths of the new
edges are minimized, whereas in methods (b) and (c)
we try to construct vertices with valence 6. In method
(b) we realize a unilateral topological optimization



still regarding the length of the edges for not creating
very unpleasant solutions. In method (c) we realize
a bilateral topological optimization, where aesthetical
aspects are only considered, when the valences of the
vertices do not lead to a unique solution. The result
of method (c) applied to the figured example has only
one unavoidable irregular vertex.

(c)

Figure 4: Connecting by triangular meshes:
(a) Minimization of the length of the edges
(b) Unilateral topological optimization

(c) Bilateral topological optimization

If arbitrary triangular nets are used, no further
topological optimization are necessary and method
(a) gives the best results, i.e. the most pleasant.

Also for quadrilateral nets three different meth-
ods for constructing connecting meshes have been es-
tablished. Figure 5 illustrates a method similar to
method (c) from above with a bilateral topological
optimization of the valences of the vertices. However,
it is more difficult: Neither non-quadrilateral meshes
nor vertices of valence # 4 can be avoided. Thus, also
the number of edges per mesh has to be considered
during the construction.

For certain applications it is useful to avoid irregu-
lar meshes or irregular vertices. Therefore a method
for minimizing the number of irregular vertices is pre-

Figure 5: Connecting by quadrilateral meshes and
considering the valences of the vertices

sented as well as a method for minimizing the number
of irregular meshes. The results are shown in Figure
6 and Figure 7, respectively.

Figure 6: Connecting by quadrilateral meshes and
minimizing the number of irregular vertices with
(right) and without (left) post-process

Figure 7: Connecting by quadrilateral meshes and
minimizing the number of irregular meshes

By the method of minimizing the number of irregu-
lar vertices meshes with many edges may arise. They
can be split up into smaller meshes in a post-process.

By the method of minimizing the number of irregu-
lar meshes only quadrilateral meshes are constructed
with at most one exception. It divides large meshes
into four smaller meshes by inserting two new ver-
tices. This method is especially useful when the two
original nets have remarkable differences in the size of
their meshes.



5 Results, discussion, and applica-
tions

Having introduced various methods for intersecting
and connecting two nets, we discuss, what results
could have been achieved due to some possible ap-
plications.

First we look at Constructive Solid Geometry. Fig-
ure 8 shows the Boolean combination of four objects,
a cube and three cylinders.

This object can be described by
cube U eylinder1\cylinder2\cylinder3.

Figure 8: Constructive Solid Geometry:
cube U cylinder1\cylinder2\cylinder3

For this application the method of connecting the
points of intersection is the most practicable because
adding the points of intersection to the net gives sharp
contours instead of rounded edges.

As already mentioned, the triangular net topology
can only be maintained by the method of Section
4. Figure 9 shows another example, where two non-
regular triangular nets are joined.

Figure 9: “Roman God Janus” constructed out of two
heads with the method of connecting by triangular
meshes

The new constructed meshes fit well into the re-
sulting net and fill the gap without strange-looking

artifacts, thus forming a nice blending.

Another application is shown in Figure 10. It is a
shuttle constructed out of five parts, namely the trunk
and the four wings.

Figure 10: A possible application: Reverse Engineer-
ing

Finally we give an example where it is useful to

maintain certain net characteristics. The nets shown
in Figure 11 and Figure 12 are control nets of the
surfaces also shown in these figures. More precisely,
the surfaces are free form splines as described in
[Prautzsch ’97].
Ezample: If two cylinders or pipes are to be blended
smoothly, their control nets can be united using the
method of connecting by quadrilateral meshes as
shown on the upper part of Figure 11.

Figure 11: Modelling of tensor product spline surfaces

In the same manner we computed the union of a
goblet and a chessman, see Figure 12.



Figure 12: goblet U king as C?-spline surfaces

6 Enhanced modelling operations

Trimming:

Trimming is another application, which can easily be
done by the described methods. Given are a net and
a curve, which lies on the surface represented by the
net. The curve can be discretized and extended in a
direction (locally) orthogonal to the net, which leads
to a second net.

Now the given net can be trimmed by intersecting
and cutting it off at the second net as shown in Sec-
tions 2 and 3.

Figure 13 gives an example.

Figure 13: Trimmed net of a quadratic surface

Rounding off:
After having joined two nets, some designer may have
the wish to round off the blendings. This can be done
by optimizing the position of the vertices with respect
to some energy.

Variational methods are used for this purpose. Only
the positions of the vertices of the truncated meshes
(in case of using the method “connecting the points of
intersection”) or of the connecting meshes (in case of
using the method “connecting by meshes”) are vari-
able, while all the others are fixed.

Since we need a discrete analogue to a curvature
definition, we use the umbrella Ap of a vertex p (cf.
[Kobbelt '95]). Then the curvature at the point p,
which is connected with the vertices q, - . - qy, is given
by

1 n
Curvature(p) := || Ap |l == p - — ;qi 2
1=

For higher moments the umbrella definition can be
raised to a higher power, i.e. the (2k)-th moments
are given by

RIS RO
1A 1o = || A%l — 3 A gy o
i=1
while the (2k + 1)-th moments can be expressed by
IRS k k
LS| akp - Akq; [
n <

=1

From the latter the formula for the torsion can be
derived for £ = 1. This leads to the weighted energy
of moments

E=Y,( u- (Curvature(p))?+
v-(Torsion(p))®+... )

where the higher moments are less important.

The results for choosing the new locations of the
variable vertices by minimizing that energy functional
are shown in Figure 14.

7 Conclusion

In this paper we have introduced modelling operations
for discrete nets.
The considered modelling operations are:

e union
e cut
e difference

e trimming



Figure 14: Fair blendings for triangular (left) and
quadrangular (right) nets using the umbrella defini-
tion

e rounding off

In particular the nets can be control nets of free
form splines. Our modelling operations therefore also
yield approximate modelling operations for free form
surfaces.

The modelling operations are based on the intersec-
tion and connection of nets. We presented different
methods to compute an intersection and union of two
nets depending on the net type and the application.
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