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�� Introduction

Subdivision algorithms are popular in CAGD since they provide simple� e�cient

tools to generate arbitrary free form surfaces� For example� the algorithms by

Catmull and Clark ��� and Loop ��� are generalizations of well�known spline

subdivision schemes� Therefore the surfaces produced by these algorithms are

piecewise polynomial and at ordinary points curvature continuous�

At extraordinary points however� the curvature is zero or in�nite� In general�

singularities at extraordinary points is an inherent phenomenon of subdivision�

see �	� 
� ���

The smoothness of a subdivision surface at its extraordinary points depends

on the spectral properties of the associated subdivision matrix�

Doo and Sabin ��� derived necessary conditions on the eigenvalues� Ball

and Storry �� �� made �rst rigorous investigations to prove the tangent plane

continuity for a class of Catmull�Clark type algorithms� Then Reif ��� ob�

served that tangent plane continuous surfaces may have local self�intersections

and introduced the characteristic map de�ned by the subdominant eigenvectors�

Moreover� for all stationary subdivision schemes he derived necessary and su��

cient conditions which guarantee that the limiting surface is regular� i�e� tangent

plane continuous without local penetrations�
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Finally� in ���� Reif�s characteristic map is used to parametrize the subdi�

vision surface� With this parametrization it is possible to extent Reif�s result

and to obtain for all stationary subdivision schemes necessary and su�cient

conditions which guarantee that the limiting surface is a regular Gk�surface�

Doo and Sabin ���� Ball and Storry ��� and Loop ��� used the smoothness crite�

ria to �nd among certain variations of the Catmull�Clark and Loop�s algorithm

the best� However� these best algorithms still produce curvature discontinuous

surfaces� see e�g� ����

In ���� we took a di�erent approach� Instead of varying the subdivision

rules within some bounds which are set heuristically� we changed the spec�

trum of the subdivision matrix so as to obtain the desired properties� Using

the G��characterization in ���� we derived a G��subdivision algorithm from the

Catmull�Clark algorithm �which does not produce in�nite curvatures�� see �����

Here we provide similar improvements� a G�� and a G��algorithm based on

the butter�y and Loop�s algorithm�

�� Loop�s algorithm

Loop�s algorithm generalizes the subdivision algorithm for surfaces expressed in

terms of the symmetric quartic box spline over a regular triangulation of IR�� It

generates from any triangular net N� a new net N�� whose vertices are classi�ed

as E� and V�vertices�

Computing the weighted averages of the four vertices of any two triangles

in N� sharing a common edge with the weights shown in Figure � gives the E�

vertices� Similarly computing the weighted averages of all vertices of all triangles

inN� around any vertex with the weights shown in Figure � gives the V�vertices�

For n � � Loop chooses � � ��� since this corresponds to box spline subdivision�
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E�mask V�mask

Fig� 
� The masks of the Loop algorithm  the V�mask is illustrated for n � ��

The new net N� is obtained by connecting for all triangles of N� the associ�

ated three E�vertices and for all edges of N� the associated E�vertices with both

associated V�vertices� By the same procedure a next net N� is obtained from

N� and so on�



A G� and a G� subdivision scheme for triangular nets 	

A vertex of any net Ni� i � �� is called extraordinary� if it is an interior vertex

with valence �� �� An extraordinary vertex of Ni is a V�vertex associated with

an extraordinary vertex of Ni��� Thus the number of extraordinary vertices is

constant for all nets Ni� i � �� and these vertices are separated by more and

more ordinary vertices as i grows�

In particular if N� is a regular triangular net� i�e� without extraordinary ver�

tices� Loop�s algorithm coincides with the subdivision algorithm for quartic box

spline surfaces� Thus also for an arbitrary net N� the sequence Ni converges

to a piecewise quartic surface with one extraordinary point for each extraordi�

nary vertex of N�� The limiting surface is a C��surface everywhere except at its

extraordinary points�

Loop�s analysis shows that the limiting surface has a continuous tangent

plane at its extraordinary points for a certain range of ��s� see ��� �

�� The butter�y algorithm

The butter�y algorithm of Dyn et al� ���� generates a sequence of triangular

nets Ni� i � �� similar to Loop�s algorithm� Only the masks used to compute

the E� and V�vertices are di�erent� They are given in Figure ��
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E�mask V�mask

Fig� �� The masks of the butter�y algorithm�

A sequence of nets Ni obtained by the butter�y algorithm with small pos�

itive � converges to a surface that is di�erentiable everywhere except at its

extraordinary points of valence 	 ���� �	� and n � ��

At extraordinary points of valence n � � the surface is tangent plane contin�

uous but it has self�intersections and therefore is not regular� We checked this

for several �� However� in the sequel we always work with � � ��	��

Variations of the butter�y algorithm have been proposed by Zorin et al� ��
��

Recently these variations were proved to generate regular G��surfaces �����

�� A smoothness condition

In Sections � and � we present modi�cations of Loop�s and the butter�y algo�






rithm giving G�� or G��surfaces in the limit� The method used to derive these

modi�cations is based on the Gk�analysis of subdivision schemes given in ����

and can also be used for subdivision schemes for quadrilateral nets �����

For more details we need to recall a result from ����� We present it in the

theorem below for any subdivision scheme S that is identical with the butter�y

or Loop�s algorithm except that E� and V�masks may be di�erent�

We assume that the limiting surface associated with any initial triangular

net N� obtained by the subdivision scheme S has Ck�parametrizations around

all its ordinary points�

Extraordinary points are isolated as observed in Section �� Therefore� to

analyze the smoothness of the limiting surface at extraordinary points it su�ces

to consider a subnetM� ofN� consisting of one extraordinary vertex surrounded

by say r� rings of ordinary vertices as illustrated in Figure 	 for r� � 	�

Fig� �� A net with one extraordinary vertex of valence � �marked by �� surrounded by r� � �
rings of ordinary vertices�

Further let M� be the largest subnet of N� whose vertices depend only on

M�� This net M� also has only one extraordinary vertex surrounded by say

r� rings of ordinary vertices and in case of the butter�y algorithm by a further

incomplete ring of V�vertices� To make M� of a similar form as M� we delete

such an incomplete ring which modi�es the de�nition of M��

Note that r� is roughly twice as lage as r�� For example in Loop�s algorithm

r� � � if r� � 	 and in the butter�y algorithm r� � � if r� � 
�

Let r� be so large that r� � r� � �� Then discarding the r� � r� outer

rings of M� gives a net K� with the same size and connectedness as M�� Let

m�� � � � �mm and k�� � � � �km denote the vertices of M� and K�� respectively�

Since the vertices ki are a�ne combinations of the mj � there is an m � m
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matrix A such that

�k� � � � km�
t � A�m� � � �mm�

t�

Let s� denote the limiting surface associated withM� under the subdivision

scheme S� Applying S toM� gives the same limiting surface s�� but the surface

s� associated with the subnet K� is smaller and only a part of s�� Taking s�
away from s� gives the here so�called �rst surface ring associated with M��

Now we are able to present the following theorem which is proven in a more

general form in ���� �

Theorem � Let A have the m �possibly complex� eigenvalues �� �� �� �� � � � � ��

where � � j�j � j�j � � � � � j�j and assume two eigenvectors c and d associated

with the double for simplicity real eigenvalue �� If the �rst surface ring of the

net given by �c� � � �cm�t � �cd� is regular without self�intersections and

j�jk � j�j� k � �� ���

then the limiting surface is a Gk�surface for almost all initial nets M��

Remark � More precisely� if Theorem � is satis�ed� the limiting surface is a

Gk�surface for all initial nets M� whose expansion by the eigenvectors of A

involves c in one and d in a second coordinate�

The eigenvalue condition ��� goes back to Doo and Sabin ���� The �rst

surface ring associated with the eigenvectors c and d is called the characteristic

map of A by Reif who used it to prove this Theorem for k � � ���� An example

for the characteristic map of Loop�s algorithm is shown in Figure 
�

Fig� �� The characteristic map of Loop�s algorithm at an extraordinary vertex of valence
n � ��

If the limiting surface in Theorem � is a Ck�manifold� k � �� then the

extraordinary point is a �at point� This fact is also true for more general

subdivision schemes� see �
� ���
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�� Modi�cations of Loop�s algorithm

The subdivision matrix A of Loop�s algorithm associated with an extraordi�

nary vertex of valence n has a single dominant eigenvalue � and satis�es the

G��conditions of Theorem � ��� ���� but not the G��condition ���� To obtain a

subdivision matrix A� that represents a modi�cation of Loop�s algorithm satis�

fying the G��condition we diagonalize the matrix A�

A � V �V ��� where � � diag��� �� �� �� � � �� ���

change the modal matrix � to

�� � �� diag��� �� �� 	�� � � � � 	��� where j�� 	�j� � � � � j� � 	� j 
 ���

and compute the new subdivision matrix as

A� � V ��V ��� ���

Lemma � The matrices A and A� have the same characteristic maps�

Proof The eigenvectors associated with � are the same for A and A�� They

de�ne a planar control net N�� Subdividing N� by Loop�s algorithm and also

by the modi�cation results both times in the same sequence of nets Ni� The

extraordinary vertex and its three surrounding rings of control points in Ni are

scaled versions of N�� The other control points of Ni are computed by the

subdivision rules for regular nets� Thus Loop�s algorithm and its modi�cation

applied to N� produce the same surface in the limit� �

The symmetry of Loop�s scheme means that the subdivision matrix A is

block�circulant� Therefore a discrete Fourier transformation can be used to

analyze the spectral properties of A�

If n � 	� the matrix A has the subdominant eigenvalue � � ��
 and exactly

six eigenvalues with modulus in the half�open interval �j�j�� j�j�� These are the
two triple eigenvalues ��� and ����� Changing just these triple eigenvalues to

the triple eigenvalues ��� � �� and ���� � ��� respectively� such that j��� � ��j
and j���� � ��j are less than j�j�� results in a matrix A�� which represents the

same masks as the original matrix A except for the E� and V�masks shown in

Figure �� where
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E�mask V�mask

Fig� �� The E� and V�masks of the modi�ed Loop algorithm near a vertex of valence n � ��

If n � 
� the matrix A has k �� b�n�����c�� double eigenvalues besides ��

We denote these eigenvalues by ��� � � � � �k and assume j��j � � � � � j�kj� Fur�
thermore� any eigenvalue of A with modulus in the half�open interval �j�j�� j�j�
is one of these double eigenvalues �i but not vice versa�

Changing just these double eigenvalues �i to the double eigenvalues �i � 	i
results in a matrix A�� which represents the same masks as the original matrix

except for the E�mask illustrated in Figure �� where

�i � fi �
�

n

kX
j��

	j cos

�
��i�j � ��

n

�
� i � �� � � � � bn��c

and

fi �

��
�

	��
���
�

if
i � �
i � �
i � �

�

Note that Loop�s masks� see Figure �� are obtained if all 	�s and ��s are zero�

Figure  shows an example� The left surface is generated using Loop�s al�

gorithm while the right one is produced with the above modi�ed masks� where

	� � ���	�� and 	� � � � � � 	k � �� The surfaces are shown with the visual�

ization of their Gaussian curvature� To compute the curvature we iterated the

algorithm until the hole became smaller than one pixel and then used the piece�

wise quartic parametrization of the surface and not a discrete approximation

based on the subdivided control net� The common control net of both surfaces

is given in Figure ��
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Fig� �� The E�masks of the modi�ed Loop algorithm near the vertices of valence n � �
illustrated for n � ��
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Fig� �� Visualization of the Gaussian curvature of the surface generated from the net shown
in Figure � by Loop�s algorithm �left� and our modi�cation �right��

Fig� �� Topview of the control net used for Figure �� It lies on a parabolic cylinder�
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Remark � In some cases better looking surfaces are obtained if Loop�s algo�

rithm is gradually modi�ed after each subdivision iteration� For example� start�

ing from the net N� shown in Figure �� the sequence of nets Ni� i � �� � � � � ��

leading to the surface shown in Figure 	 �bottom left� has been obtained by Loop�s

algorithm modi�ed with �� � ��� �
p
i�	�
 when applied to the net Ni� In fur�

ther iterations we would chose �� and �� constant as in step 
� Note that the

modi�ed subdivision matrix satis�es the conditions of Theorem � for i � ��

The adaptive linear combination of Loop�s and our scheme produces a surface

with a more even curvature distribution and without in�nite curvature�

�
��

����

���

���

Fig� �� Visualization of the Gaussian curvature of the surface generated from the net shown in
Figure 
� by Loop�s algorithm �top left�� our modi�ed scheme �top right�� an adaptive linear
combination of Loop�s and our scheme �bottom left� and our modi�ed scheme using the thin
plates energy to determine the weights of the masks �bottom right��

Remark � The eigenvalues of A with modulus less than j�j� need not be changed�

However� the masks of the modi�ed algorithms depend linearly on 	�� � � � � 	� � see

���� Therefore quadratic energy functionals can be used to determine the optimal



��

Fig� 
�� Topview of the control net used for Figure �� It lies on a hyperbolic paraboloid�

values for 	�� � � � � 	� �

An example surface is shown in Figure 	 �bottom right�� Starting from the

initial net of Figure �� the surface is computed by the modi�ed Loop algorithm

using the thin plates energy to provide the weights for the masks�

	� Modi�cations of the butter�y algorithm

A limiting surface obtained by the butter�y algorithm is not di�erentiable at ex�

traordinary points� in general� This can be seen from the associated subdivision

matrix A which is block�circulant

A �

�
����

A� A� � � � An��

An�� A� � � � An��

���
� � �

���
A� � � � An�� A�

�
			
 �

Let bA � diag� bA�� � � � � bAn��� be the discrete Fourier transform of A� Then the

blocks bAi� i � �� � � � � n� �� are given by

bAi �

�
����

	i��

� bLi

� � bRi

� � � O

�
			
 �
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with the Kronecker symbol 	i��� the 
� 
 zero�matrix O and

bLi �

�
��

�

�
� �
cin � �c�in �� � ��� � a�in ��

� � �
��ai

n

�
� �a�in � a�in �� ��� � ain�� ��

�
	
 �

bRi �

�
�� � �� �a�in �

� �� �

� � ��

�
	


and an � exp���
p���n�� cin � Re�ain�� The eigenvalues of A are the eigenvalues

of the blocks bAi� i � �� � � � � n� �� and are as follows�

� a simple eigenvalue ��

� a ��n� ���fold eigenvalue ��

� a �n�fold eigenvalue �� and

� the eigenvalues of bLi� i � �� � � � � n� ��

For an extraordinary vertex of valence 	� the largest eigenvalue of bL�� bL� andbL� is �� �
p
�� �����
� Therefore the subdominant eigenvalue � is the triple

eigenvalue � � �� �
p
�� �����
 whose associated eigenvectors are linearly

independent� So the limiting surface is not di�erentiable at an extraordinary

point for valence 	�

However� the leading eigenvalues of bL� and bL� are associated with eigen�

vectors forming a regular and injective characteristic map� As in Section � we

write bL� as bL� � bV��bV ��

� � where � � diag��� �� 
���

and �see �����

bV� �
�
� � � 
�

� � �
�� �� ���

�

 � �� �

��� � 
� � ���


�

where � � f�� �� 
�g� Changing the leading eigenvalue � to � � �� such that

j�� �j is less than � results in a new modal matrix �� and a modi�ed block bL��
The inverse� discrete Fourier transform gives the modi�ed matrix A�� It di�ers

from the initial matrix A at those blocks that depend on bL�� These are the

second diagonal blocks� Li� of the blocks Ai� Their modi�cations are�
� ��i�� ��i�� ��i��

��i�� ��i�� ��i��
�i�� �i�� �i��

�

 � Li �

�

	
bV� � diag��� �� �� � bV ��

� � i � �� �� ��

From this we read of the masks of the modi�ed butter�y algorithm which are

shown in Figure ��� where we used�
� ��

��
�

�
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Fig� 

� The E� and V�masks of the modi�ed butter�y algorithm near a vertex of valence
n � ��

For extraordinary vertices of valence n � 
� � � � �  the limiting surface is a

regular C��surface� see �����

For an extraordinary vertex of valence n � � the subdominant eigenvalue

� comes from bLi with i �� �� n � �� This means that the characteristic map

of the subdivision matrix A overlaps itself� cf� ���� ���� However� the largest

eigenvalue of bL� is associated with two eigenvectors representing the control

net of a regular injective surface ring� So let �i denote the largest eigenvalue

of bLi� i � �� � � � � n � ��� Then we change the eigenvalues �i� i � �� � � � � n � ��

with modulus in �j��j� �� to j�i � 	ij 
 �� as in Section � so that �� becomes

the subdominant eigenvalue� The eigenvectors of bLi� i � �� � � � � n � �� form the

matrices bVi given by �see �����

bVi �
�
� �i e�i ��i

� � �
��i �

e�i
���i

�

 � �� �

��� � 
���cin � c�in �� ���


�c
i��
n

ai��n

for � � f�i� e�i� ��ig � spec�bLi�� This yields again the masks of Figure �� with

the weights�
� ��i�� ��i�� ��i��

��i�� ��i�� ��i��
�i�� �i�� �i��

�

 � Li �

�

n

n��X
j��

aijn
bVj � diag�	j � �� �� � bV ��

j

for i � �� � � � � n � � and �� � ���� �� � �� � � ��� Note that the weights are

always real if 	�i � 	�n�i for i � �� � � � � bn��c�
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Figure �� shows an example with an extraordinary vertex of valence n � �
�

The top row shows the surfaces generated using the butter�y scheme �left� and

the above modi�ed masks �right� with the parameters � � ���� and 	�i �

�� � �i � ���� for �i � ��� i � �� � � � � n � �� The bottom row shows a selective

enlargement of some vicinity of the extraordinary point of the two surfaces�

respectively� Note that the left surface has self�intersections while the right

surface as well as the common control net of both surfaces� see Figure �	� have

no self�intersections�

Fig� 
�� The surface generated from the net shown in Figure 
� by the butter�y scheme �top
left� and our modi�cation �top right�� The bottom row shows an enlargement of some vicinity
around the extraordinary point of the two surfaces from a di�erent perspective as the top row
with their respective boundary curves�

Remark 	 The surface obtained by the modi�ed butter�y algorithm does not

interpolate all vertices of the initial control net� However� if we use the butter�y



�


Fig� 
�� The control net used for Figure 
��

algorithm in the �rst iteration and the modi�cation in all further iterations� all

vertices of the initial net are interpolated�
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