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Abstract

In this paper we present a method to optimize the smoothness order of subdivision algo-
rithms generating surfaces of arbitrary topology. In particular we construct a subdivision
algorithm with some negative weights producing G?-surfaces. These surfaces are piecewise
bicubic and are flat at their extraordinary points. The underlying ideas can also be used
to improve the smoothness order of subdivision algorithms for surfaces of higher degree or

triangular nets.
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1 Introduction

Subdivision algorithms were first introduced to CAGD by Chaikin [1974]
and Lane & Riesenfeld [1980] for the generation of curves and tensor pro-
duct surfaces. Efforts to understand and analyze these and other subdi-
vision algorithms lead to the general class of stationary subdivision algo-
rithms [Micchelli & Prautzsch '87, Prautzsch 91, Dyn & Levin ’92]. These
algorithms which operate on regular control nets are a well-understood and
rife tool today [Cavaretta et al. "91].

However, most types of surfaces cannot be generated from regular control
nets as for example closed surfaces of genus 0. Therefore stationary subdivi-
sion algorithms were modified to be applicable to arbitrary control nets with
irregular vertices or irregular meshes. [Catmull & Clark ’78, Doo & Sabin ’78,
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Loop 87, Dyn et al. '90, Qu '90] All these algorithms base on a simple com-
mon concept: given a control net a new net is computed by simple affine
combinations of the given vertices. Iterating this process leads to a sequence
of ever denser nets which converge to a continuous surface. The main prob-
lem for these algorithms is to analyze the smoothness of this limiting surface.
First attempts to solve these questions were already made by Doo & Sabin
[1978]. Loop [1987] and Ball & Storry [1988] refined their ideas. But in
1993 Reif [1993] showed that all former proofs were incomplete. Recently
Reif [1995] and Prautzsch [1998] could construct conditions that guarantee
the convergence of subdivision algorithms over irregular meshes to '~ and
G*—surfaces respectively. These conditions are the key to analyze existing
subdivision, algorithms and to improve the smoothness order of their limiting
surface.

2 The Catmull/Clark Algorithm

We will show how the general conditions can be applied for the example
of the Catmull/Clark algorithm. We investigate its smoothness order and
modify the algorithm so as to increase its smoothness order.

First we describe the Catmull/Clark algorithm. Given a quadrilateral net
N it produces a new quadrilateral net A/} whose vertices are classified as M-,
E-, and V-vertices. Averaging the four vertices of each mesh in Ny gives the
M-vertices. Averaging the midpoint of each edge common to two adjacent
meshes in Ny with the M—vertices of the meshes gives the E-Vertices. Finally,
computing a weighted average of the 2n + 1 vertices of all meshes in Ny with
a common interior vertex gives the V-vertices of ;. The weights are given
by the masks in Figure 1.

Connecting each E-vertex with the M— and V—vertices corresponding to
the two pairs of meshes and vertices defining both the underlying edge gives
the new net V.

By the same procedure a new net A is then obtained from N and so
on.

Note that the new nets N;, i > 1, contain only four-sided meshes. There-
fore the only extraordinary vertices of a net A;, i > 2, are V-vertices which
correspond to an extraordinary vertex of N;_;. Consequently, all nets N,
2 > 1 have the same number of extraordinary vertices and these vertices are



1 1
16 ’16
1 1
4 4
3 N : 3
8 8
1 1
4 4
515
M-mask

E-mask

Figure 1: The masks of the Catmull/Clark algorithm.

the more isolated the higher n is.

If Ny is a regular quadrilateral net, then the Catmull/Clark algorithm is
simply the subdivision algorithm for the bicubic box splines over a rectan-
gular grid. Thus each regular part of 4 x 4 vertices of any control net N;
defines a bicubic patch of the limiting surface where the 4 x 4 vertices are
the usual spline control points.

The only interesting parts of the limiting surface are those which are
determined by (sub)nets consisting of one extraordinary vertex surrounded
by 3 rings of quadrilateral meshes as shown in Figure 2. Let A denote such a
(sub)net and let py, ..., p,, be its vertices. Refining Ny gives a net N; with 6
rings of quadrilateral meshes around an extraordinary vertex. Discarding the
3 outer rings of control points results in a net A, with the same number of
vertices and connectedness as the initial one. Let qq,...,q,, be its vertices.
Then there is an m x m matrix A such that

For later reference consider the surface sy defined by the net Ay (and
the Catmull/Clark algorithm). It is also given by A, whereas the subnet
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Figure 2: A control net with an extraordinary vertex of valence 6.

di, - - -, qm defines only a part sy of sg. The surface ring obtained from sy by
taking s; away will be called the first surface ring associated with Nj.

Next consider the class of all subdivision algorithms obtained from the
Catmull/Clark algorithm by changing the matrix A. The spectral prop-
erties of A determine whether such an algorithm generates regular C*-
manifolds, i.e. G*—surface using CAGD terminology. Specializing the results
in [Prautzsch '98] we have

Theorem 2.1 Let 1, A\, X\, i, ..., ¢ be the m (possibly complex) eigenvalues
of A where 1 > |A| > |u| > ... > |¢| and assume two eigenvectors ¢ and d
associated with X. If the first surface ring of the net given by [cy...c,]" =
[ed]’ is reqular without self-intersections and

AP > qul, k=12

then the limiting surface is a G*—surface for almost all initial nets Ny. Fur-
ther, the condition |A|* > |u| is also necessary.

Remark 2.2 If the limiling surface is a G*—surface, then it has a flat point
corresponding to the extraordinary point of Ny. In general it is not pos-
sible to generate G*—surfaces by subdivision algorithms consisting of poly-



nomial patches of total bidegree k + 1 without flat points, see [Reif 906,
Prautzsch & Reif "97].

Remark 2.3 Reif was the first to find out the importance of the first surface
ring of [cd]. He called it a characteristic map of A [Reif 95].

3 A modification of the Catmull-Clark—Al-
gorithm

The matrix A satisfies for any n the G'-conditions [Peters & Reif '97], but
not the G?—conditions of the Theorem above [Catmull & Clark '78, Ball &
Storry '88]. Moreover, all matrices obtained from a Catmull/Clark matrix A
by changing only the weights of the V-masks in Figure 1 do not satisfy the
G*—conditions [Umlauf "96, Ball & Storry ’88].

Still in order to obtain a G*-algorithm we just diagonalize the matrices
A = VAV~ where A = diag(1,\, A\, y,...,(), change the modal matrix
A into A = diag(L, A\, A, 1/, ..., ¢") and compute the modified subdivision
matrix A’ = VAV~

Lemma 3.1 The matrices A and A" have the same characteristic maps.

Proof The eigenvectors associated with A are the same for A and A’. They
define a planar control net Ny. Subdividing Ny by the Catmull/Clark algo-
rithm and also by the modification results both times in the same sequence of
nets NV;. The extraordinary vertex and its three surrounding rings of control
points in A; are scaled versions of Ay. The other control points of N; are
computed by the subdivision rules for regular nets. Thus the Catmull/Clark
algorithm and its modification applied to Ny produce the same surface in the
limit. O

Conclusion 3.2 As a consequence of Theorem 2.1 and Lemma 3.1 the mod-
ified algorithm produces surfaces which are tangent plane and curvature con-
tinuous even at their extraordinary points.

The symmetry of the Catmull/Clark algorithm masks with respect to
the extraordinary point corresponds to a block circulant structure of A

[Doo & Sabin '78]. Changing A does not affect the block circulance which
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means that the masks given by A’ are again symmetric with respect to the
extraordinary point.

Because of the block circulance one can use a block Fourier transformation
to bring A into block—diagonal form. Then it suffices to further diagonalize
only the blocks belonging to the eigenvalues with modulus in (A, A*]. Chang-
ing all eigenvalues of A with modulus in (A, A?] to 0.3 which is always less
than A% one obtains the masks of Figure 3 and Table 4. We listed only the
most interesting masks for extraordinary vertices of valence n = 5,6,7,8,9
and 10. For n = 3 the M- and E-masks are not changed.

Ys T2

Y1

Ton
Yon-1

M-mask E-mask V-mask

Figure 3: The modified masks for n = 5. The weights are listed in Table 4.

Figure 6 shows an example. The surface on the left was produced by the
Catmull/Clark algorithm and the surface on the right by the above mod-
ification from the control net shown in Figure 5. The surfaces are shown
with a visualization of their Gaussian curvature. This curvature is not a dis-
crete approximation obtained from the subdivided control net. We used the
piecewise bicubic parametrization of the surface to compute the Gaussian
curvature.

Remark 3.3 Similar to the above modification, one can modify the subdi-
vision algorithms by Loop and Qu so as to obtain G*— and G°—algorithms,
respectively. For details see [Umlauf "96, Prautzsch & Umlauf "98].



n=>, n==~6 n==19

o = Bi = o = Bi = o = Bi =
0.250000 0.375000
0.250000 0.375000 0.222472 0.344994
0 0.250000 0.375000 0.232198 0.352200 0.233758 0.055618
0.245100 0.365736 0.236100 0.058049 0.222472 0.069176
0.243203 0.061275 0.232198 0.073899 0.003614 0.009944
0.245100 0.069980 0.006949 0.008900 0.039778 0.027033
. 0.005498 0.003206 0.035603 0.011399 0.014633 0.002456
3 0.012826 —0.002857 0.006949 —0.004450 0.009824 —0.018707
—0.002100 —0.003963 —0.017801 —0.022799 —0.010126 —0.011037
—0.015854 —0.002857 —0.013899 —0.004450 —0.044151 —0.018707
—0.002100 0.003206 —0.017801 0.011399 —0.010126 0.002456
2n 0.012826 0.069980 0.006949 0.008900 0.009824 0.027033
0.005498 0.061275 0.035603 0.073899 0.014633 0.009944
0.006949 0.058049 0.039778 0.069176
0.003614 0.055618

n=2~8 n=29 n =10

a; = /Blz a; = /Blz a; = /Blz
0.250000 0.375000
0.250000 0.375000 0.195996 0.321865
0.250000 0.375000 0.201818 0.325340 0.223867 0.048999
0.216666 0.341666 0.224431 0.050454 0.195996 0.057675
0.233333 0.054166 0.201818 0.064116 —0.001581 0.010257
0 0.216666 0.062500 0.001802 0.011859 0.041030 0.042986
0.000000 0.008333 0.047437 0.039981 0.021141 0.011587
0.033333 0.033333 0.019952 0.008169 0.046349 0.012630
0.016666 0.008333 0.032677 0.002029 0.004139 —0.003096
0.033333 0.000000 —0.001114 —0.005024 —0.012384 —0.01641
3 0.000000 —0.008333 —0.020099 —0.018797 —0.008075 —0.005247
—0.033333 —0.033333 —0.007855 —0.005917 —0.020991 —0.015611
—0.016666 —0.008333 —0.023668 —0.018797 —0.005116 —0.005247
—0.033333 0.000000 —0.007855 —0.005024 —0.020991 —0.016419
2n 0.000000 0.008333 —0.020099 0.002029 —0.008075 —0.003096
0.033333 0.033333 —0.001114 0.008169 —0.012384 0.012630
0.016666 0.008333 0.032677 0.039981 0.004139 0.011587
0.033333 0.062500 0.019952 0.011859 0.046349 0.042986
0.000000 0.054166 0.047437 0.064116 0.021141 0.010257
0.001802 0.050454 0.041030 0.057675
—0.001581 0.048999

_ 5 _1 _ 1 _
Yo = 13, Yol = 5, Y2 = 35, 1= 1,...,n, forn =3.

_ 1 _ 1 _ 1 -
Yo =g Yool = 5., Y2i =37, 1 =1,...,n, forn >5.

Table 4: The weights of the modified masks for n = 5,6,7,8,9 and 10.
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Figure 5: The control net used for Figure 6.
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Figure 6: The surfaces produced by the Catmull/Clark algorithm (left) and
its modification (right).
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