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Abstract

A simple method is given to construct periodic spline representations for circles

These are n�times di�erentiable and of minimal degree
 Further� the extension to
spheres is discussed

Keywords circle� sphere� stereographic projection� periodic splines

�� INTRODUCTION

The simplest geometric objects after lines are circles
 Their simplicity and symmetry
accounts for their importance in geometric modelling
 For example� circles come up
naturally in surfaces of revolution


Since CAD�systems are often based on rational splines� i
e
 piecewise rational
polynomials� to represent curves and surfaces� it is interesting and often necessary
to represent circles and spheres in this way
 Already Apollonios ��

 B
C
� knew
quadratic parametrizations of the circle and Hipparchos ���
���� B
C
� used the
stereographic projection for the sphere� cf
 �Blaschke� ����� pp �������
 A complete
characterization of all rational patches on the sphere was �rst given� however� in
�Dietz et al
� �����


Strikingly only few attempts have been made so far to smoothly parametrize
the full circle
 �Piegl � Tiller� ����� describe a piecewise quadratic parametrization
and show that it is not possible to represent the full circle by quadratic C��B�splines


Chou �Chou� ����� constructs a representation of the entire circle by one quartic
polynomial segment and observes that all weights of the quintic B�ezier representa�
tion are positive
 The corresponding periodic homogeneous B�spline representation
is also not di�erentiable


Therefore and in consideration of the fact that many numerical methods used in
geometric modelling need di�erentiable parametrizations� we will present a simple
method to obtain �n � ���times di�erentiable periodic B�spline representations for
the circle of degree �n and show that this degree is minimal
 As an example we
derive explicitly a periodic representation by quartic C��B�splines
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Figure �� Stereographic projection
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Figure �� Central projection


Furthermore� we will discuss representations of entire spheres


�� THE CONSTRUCTION

Throughout the paper we consider the unit circle given by a periodic parametriza�
tion x�t�
 Small hollow letters denote homogeneous coordinate columns
 Thus for
x � �x y z� t we have

x� � y� � z� �

where z is the homogenizing coordinate
 For simplicity� we will always assume that
z is positive and that x� y� z have no common divisor


Any parametrization x�t� of the circle can be obtained from a parametrization
p�t� � �p�t� 
 r�t�� t of the line y � 
 by the stereographic projection

x �

�
��

�pr
r� � p�

p� � r�

�
��

with center c � �
 �� �� t as illustrated in Figure �

Hence we need a periodic parametrization of the projective line y � 

 Any

such parametrization can be obtained from a closed curve around c by a central
projection with center c as illustrated in Figure �


For notational convenience we will use a second coordinate system� namely the
a�ne system with origin c and unit vectors �� 
 �� t and �
 � 
� t
 The respec�
tive coordinate columns are denoted by small bold letters
 Thus p and �p�r �� t

represent the same point and the points represented by c�p� and p � � p r �t lie on
one line




Note that if p�t� orbits around c once� then p�t� and its stereographic projection
x�t� trace out the line and circle twice
 If p�t� is centrally symmetric� then both
cycles of the line and circle are parametrized alike
 However� note for later reference
that the coordinate representation p has di�erent signs in both cycles


�� AN EXAMPLE

Here we apply the construction above to derive an explicit representation of the
circle by a di�erentiable periodic spline of degree �
 Let � � �
��m� m � �� and

pi �

�
cos���� �i��
sin���� �i��

�

and let N�
i �t� denote the piecewise quadratic B�spline over the knots i� i� �� i� ��

i� �
 Then
p�t� �

X
i�Z

piN
�
i �t�

is a centrally symmetric spline with p�t� � �p�t �m�
 It is shown in Figure � for
m � �
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Figure �� Centrally symmetric spline


The corresponding parametrization x of the circle is a piecewise quartic C��
spline given by

x�t� �
X

xiN
�
i �t�

where N�
i denotes the B�splines over the knots bi��c� b�i � ����c� � � � � b�i� ����c�

bxc �� maxfi � xji � Zg� and where

x�l�� �

�
��
c cos�� � �l�� ��
c sin�� � �l�� ��

�

�
��

x�l �

�
��
d cos�� � �l��
d sin�� � �l��

�

�
��

� � ��� �
�

c � �� cos�
d � �cos� �� ����� cos� ��
� � �� cos� �� cos� �� ����� cos� ��



These control points xi are shown in Figure �
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Figure �� The circle as periodic spline


Note that x�t� is symmetric with respect to rotations around the angle ��

In Section � we will show more generally that rotational symmetry of p implies
rotational symmetry of x with respect to the double angle
 Before we come to it� we
show that a Cn���spline representation of the circle must be of degree �n at least

Thus the construction given in Section � gives minimal degree representations of
the circle if p is a Cn���spline of degree n


Remark � For � � �
� �m � �� it is not possible to represent x as a C��spline�

However� one can represent x by one quartic polynomial� The B�ezier representation

has zero weights �Chou� ������

Example � Figure � shows a hyperboloid of one sheet and the corresponding control

net of a tensor product B�spline representation of degree ��� ���

Figure �	 Hyperboloid of one sheet and corresponding control net�

�� POSITIVE WEIGHTS

In this section we will consider B�ezier representations of the circle

First observe that the B�ezier points of the parametrization in Section � are

given by
�

�
�x� � x��� x�� x�� x��

�

�
�x� � x��� etc
 �

thus the weights i
e
 z�coordinates are all positive




The B�ezier�representation of an arbitrary circle segment

x
l�t� �

�k��X
i��

�
��
xi

yi
zi

�
��B�k��

i �t�

can be obtained from the B�ezier representation of the corresponding segment pl of
the preimage p�

pl�t� �
k��X
i��

�
pi
ri

�
Bk��

i �t�

by the product formula for Bernstein polynomials �Farin� ���
� p ���

In particular we obtain for the z�coordinate�

�
�k � �

j

	
zj �

min	k���j
X
i�max	��j�k��


�pipj�i � rirj�i�

�
k � �
i

	�
k � �
j � i

	
�

If xl represents at most a semicircle we can because of the symmetry properties
shown in Section � assume without loss of generality that pl lies entirely in the �rst
quadrant of the p� r�plane� i
e



 � p�� rn


 � pi��� ri for i � 
 � � � k �

Thus the positivity of the weights zi follows immediately


�� CONTINUITY ORDER OF THE PREIMAGE CURVE p

In Section � we showed that any periodic parametrization x�t� of the unit circle
is related by the stereographic projection to a closed curve p�t� which is centrally
symmetric to the center of projection c
 Here we will show that p�t� and x�t� are
of the same continuity order


Consider the inverse projection from the line y � 
 onto the circle
 It is given
by

�p � p �

�
��
z � y


x

�
�� and also by �r � p �

�
��

x



z � y

�
�� �

Since z is assumed to be positive� z � y and z � y are non�negative
 Thus we have

p � �
q
�z � y��� and r � x��p

and also
r � x��r and r � �

q
�z � y��� �

where the signs of p�x� and r�x� change at x � � 
 � � �t and x � c� respectively�
as already noted in Section �
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Figure �� Peripheral and perimeter angle


Since the �rst square root does not change its sign when the other does and
vice versa� the four expressions above imply that p is of the same continuity order
as x


�� MINIMAL DEGREE

Let x� y� z be piecewise polynomial without common divisor
 Then z � y and z � y
also have no common divisor
 Therefore and because of �z� y��z� y� � x� one can
factor x � �pr such that z � y � �p� and z � y � �r�� cf
 �Kubota� �����
 Hence�
p is also piecewise polynomial� while the degree of x is twice as high as that of p


Since polynomials are not periodic� p must be piecewise polynomial of degree
k � �
 Hence a k�times di�erentiable parametrization x�t� of the circle must be at
least of degree �k � �


�� MINIMAL NUMBER OF SEGMENTS

The B�spline control polygon of a periodic� centrally symmetric curve p consists of
one or an even number of control points
 Thus a non�degenerate p must have at
last � control points


If p is of degree n and continuity order �n � ��� then the number of its B�
spline control points equals the number of its segments
 Therefore p has at least
� segments while x is of degree �n and has at least � segments
 Consequently a
periodic Ck�parametrization x�t� of the circle must consist of at least � segments to
be of minimal degree �k � �


�� SYMMETRIC REPRESENTATIONS

In order to investigate symmetry properties of x�t� we can assume without loss of
generality that x�
� � c
 Then we have r�
� � 



Now let ��t� be the angle p�
�� c�p�t� and ��t� be the angle
x�
�� � 
 
 � �t � x�t�� see Figure �
 Recall that the peripheral angle � is half the
perimeter angle �




Using these angles we can write

x�t� � ����

�
��
� sin�
cos�
�

�
�� � p�t� � ����

�
cos�
sin�

�
�

The formula of the stereographic projection in Section � then shows that

���� � ����� � p� � r� � ����� �

If p�t� is invariant under a rotation around c by an angle 	� then

���� � ���� 	�

which implies
���� � ��� � �	� �

i
e
 x is invariant under a rotation around the origin by �	

Further� if p is symmetric with respect to the line through c and p�t�� then

���� 
� � ���� 
� � � � ��t�

which implies
��� � �
� � ��� � �
� � � � ��t� �

Consequently x is symmetric with respect to the line through the origin � 
 
 � �t

and x�t�


	� CONTINUITY OF ODD DERIVATIVES

If a homogeneous representation x�t� of the circle is k�times di�erentiable� then the
a�ne coordinate functions x�z and y�z are also k�times di�erentiable
 However�
x�z and y�z can be smoother
 In particular we show that �k�times di�erentiable
symmetric a�ne circle representations are also �k � ��times di�erentiable
 This
generalizes the result by �Piegl � Tiller� ����� for n � 



Let x�t� be a symmetric parametrization of the unit circle where x � � x y �t is
an a�ne coordinate column
 Without loss of generality we assume x�
� � � 
 �� �t

and symmetry around t � 
� i
e
 we have

x�t� �

�
��

�

�
x��t� �

Further suppose that x�t� is �k�times di�erentiable and that the left and right hand
side derivatives of order n � �k � � of x�t� exist at t � 

 Due to the symmetry
property these derivatives are related by

x	n
�
�� �

�
�

��

�
x	n
�
�� �

which implies identity of the �rst coordinates




Recall that the arclength of x�t� is given by

s �
Z
k �xkdt �

Hence s�t� is as often di�erentiable as x�t�
 Now we di�erentiate

x�t� � x�s�t�� �

�
� sin�s�
cos�s�

�

by means of the chain and product rule and obtain

x	n
�
��� x	n
�
�� � �s	n
�
��� s	n
�
���
d

ds
x�
� �

Since d
ds
x�
� � � � � 
 �t the equation above implies the identity of the second

coordinates of the n�th derivatives

Hence x�t� is n�times di�erentiable at t � 



�
� THE SPHERE

The construction in Section � cannot be extended to spheres for the following
reasons
 The stereographic projection does not establish a one�to�one correspon�
dence between a sphere and a plane and� moreover� it is impossible to map
a planar domain di�erentiably onto the entire sphere without singularities� see
e
g
 �Prautzsch � Trump� �����


But it is possible to decompose the sphere into several triangular or quadrilat�
eral patches
 Farin� Piper� and Worsey ������ represent the octants of a sphere and
Dietz ������ showed that for arbitrarily prescribed circular boundary curves there
exists a tensor product patch of degree ��� �� on the sphere
 Thus with the cube in
mind one sees that it is possible to describe the entire sphere with � tensor product
patches of degree ��� ��


We will show that lower degree representations of the entire sphere are not
possible� Assume� that there exist f triangular quadratic regular patches covering
the sphere with altogether v vertices
 Then recall from �Dietz� ����� Thm
 �
��
that the angles of each patch sum to ��
�
 Thus we have

v � ��
� � sum of all angles � f � ��
�

and consequently v � f��
 Since there are e � �f�� many boundary curves� Euler�s
identity v � e� f � � is not satis�ed which proves the assumption wrong


It is also impossible to partition the entire sphere into biquadratic tensorprod�
uct patches
 Namely� every such patch could be decomposed into two quadratic
triangular patches


Since every irreducible parametrization of the sphere is of even degree
�Dietz et al
� ������ the sphere cannot be decomposed into triangular or quadri�
lateral patches whose degree is less than � or ��� ��� respectively
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