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Abstract: In this paper results from a forthcoming paper are presented concerning the convexity
of multivariate spline functions built from B-patches. Conditions are given under which it is possible
to define a control net for such spline functions. The control net is understood as a piecewise linear
function. If 1t 1s convex, then so is the underlying spline.
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1 Introduction

For the Bézier representation of a bivariate polynomial over some triangle A it is well-
known that the convexity of the Bézier net implies the convexity of the polynomial over
the triangle A. This fact was first proved by Chang and Davis [1984] and later generalized
to multivariate polynomials and their Bézier representations over a simplex [DM88, Bes89,
Pra95].

Here it is shown that this property is, more generally, even shared by multivariate polyno-
mials and their B-patch representations. Moreover it is also possible to extend the proof to
multivariate spline functions and their B-patch control nets.

2 Multivariate B-splines

This paper is based on the B-splines constructed by Dahmen, Micchelli and Seidel [1992]
from B-patches. To begin with let us recall the relevant properties and thereby introduce
the notation used in this paper:

For any set of knots ug,...,u; € R® or s X k+1 matrix [ug...u;| the simplex spline
M(x|ug ... ug) is defined as the solution of the functional equation

/]RS FOM(x|ug .. . ug)dx = k!/ F([uo - .. wplt)dt
for all continuous functions f(x) where
c={teR"* o <t,[t| =1} , |t| =sum of all coordinates of t

denotes the standard k-simplex.
Thus the above normalization implies that

/]RS M(x|ug ... up)dx =1 .
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Now for any s + 1 knot clusters ug, a = 0,...,s, § = 0,...,n, consider the simplices o;
with vertices uf ,...,uf wherei= (ip,...,1i,) € Nt and |i| = n. Then the corresponding
splines
volyo; 0 0
Bi(x) = (njs)lM(x|u0 N R | I E
S

are the multivariate B-splines which were introduced in [DMS92] with the name B-
weights.

Throughout the paper we will assume that bold indices i,j, ... are in N5 and that the
intersection € of all simplices oy, |i| < n, is non-empty. Then one has the following crucial

property:

Theorem 2.1 Let p(x) be any s-variate polynomial of total degree n and let p[x; ... x,] be
the unique symmetric multiaffine polynomial with the diagonal property p[x ... x] = p(x).
Then for all x €  one has

p(x) = Z plug ... uf _y ooufoul g ]Bi(x) .

li|=n

For the proof one can use the properties of the so-called polar form p[x; ... x,] and the
recurrence relation of simplex splines to evaluate the left and respectively the right hand
side of the equation recursively. A comparison then reveals the identity above.

A dimension count futher shows that the ("1?)

(over Q).

B-splines B; are linearly independent

Remark 2.2 Theorem 2.1 also shows that for s = 1 the B;(xz) are the common univariate
B-splines. Further if ug = --- = u) for all a, then the Bi(x) are the truncated Bernstein
polynomials over §).

3 Control nets

In order to describe the control net of a polynomial

p(x) =) ¢Bi(x), xeQ,
we need the B-spline representation of x. From Theorem 2.1 we obtain

s 1a—1

X = ZXiBi(X) , where x; = %Z Z uj .

a=0 =0
In particular, if s = 1, then the x; are the so-called Greville abscissa and if
uzg =u” forall a and 3
then the x; lie on a regular grid, i.e.
Xj = (iouo + -+ iu’)/n .

Next we will construct a triangulation whose vertices are the abscissae x; and define the
control net of p as the piecewise linear function ¢(x) which is linear over each simplex of
this triangulation and which interpolates the ¢; at the x;.
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If the x; are not too far away from the vertices of a regular grid, then we can obtain a
triangulation from a triangulation of the regular grid. Therefore we will first describe a
triangulation for the case ug = u®. Then we change the triangulation by moving the uj
independently from each into general positions and present conditions under which the
triangulation remains a triangulation with disjoint simplices.

For the construction of a Bézier net Dahmen and Micchelli [1988] used a triangulation due
to Allgower and Georg:

Let 7 be the simplex u' ..

. u’ and p the subsimplex whose vertices have the barycentric

coordinates
n n—1 n—1
0 1 0
Lol 2 o |, 0] o
0 0 1
with respect to w. Let ag,...,as be these vertices in any arbitrarily fixed order. Counting

indices modulo s + 1 the vertex ag and the ordered sequence of vectors
Vo =4a3 —a0,.-., Vs = as41 — Qs

describe a simple closed path through all vertices of p. Note that a; and v;, ..., v;1s describe
the same path. Now if any two successive vectors, say v; and v;4q are interchanged, then
a;;Vit1,- -, Virse1 describes a path around a simplex p’ which shares an s—1-dimensional
face with p. By further transpositions of successive vectors one gets paths around succes-
sively adjacent simplices. All the simplices obtained in this way form a triangulation of the
entire space R®. This triangulation is also formed by all hyperplanes spanned by the knot
ug and any s—1 vectors out of {vg,...,vs} and translates of these hyperplanes by integer
multiples of the v;. Thus this triangulation respects the simplex 7= and can be restricted
to .

Remark 3.1 If the a; denote the vertices of o in a different order, then the construction
above results in a different triangulation.

4 Conditions on the knot clusters

Assume that all knots in every cluster coincide, i.e. ug = u® for all @ and 5. Then the
above triangulation has the following property:

Lemma 4.1 The union of all simplices with vertex ag forms the set of all points
X =ag+ povo + -+ psvs ,  where p; € [0,1] .

Proof
Let pg > - -+ > ps. Then since vo+ -4+ v, = 0, we can write x = ag+ p,vo+ -+ sV, as

x=(1—po+ ps)(ao+vo+- -+ vs_1 +vs)
+(ps—1 — ps)(ao+ vo+ -+ Vi)

+(po — p1)(@0 + vo)
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which is a convex combination of the vertices of the simplex given by the loop ag,vg ... v;.
Similarly any ordering of the u; corresponds to a loop ag, wq ... w, where (wq,..., W) is
a permutation of (vq,...,vy) and vice versa. This completes the proof since all these loops

describe all the simplices with vertex ap. m

Now we move the ug independently from each other into general positions. This will also
change the positions of the x; and the shape and positions of the simplices of the triangu-
lation given in Section 3. The new triangulation is still feasible under the following mild
restrictions on the knot positions:

Theorem 4.2 If for alla =0,...,5s and 3 =0,...,n
uj € u” +[vo ... vs[0, 1/2)st
then any two simplices of the new triangulation have disjoint interiors.

We omit the full proof here and derive only the crucial property on which the proof is
based:

s ta—1
_ 1 o
n
a=0 =0
s ta—1

€ % Z Z u® + [VO . VS][071/2)5+1

=0 =0

1 S
== Z iqu® 4+ [vg ... v4][0,1/2)! .
n a=0

Thus different x; lie in disjoint convex regions.

5 B-patches with convex control nets

Consider the control net of a single B-patch. It is a piecewise linear function defined over
some triangulation with the vertices x;. In general, this triangulation does not form a convex
domain for the control net. Therefore we need to explain what is meant by a convex net:
First let q(x) = [x ¢(x)] be the graph of a quadratic polynomial ¢(x) and let ¢; € R*t!,
|i| = 2, be its B-spline control points with respect to the knots uz,a=0,...,56=0,1,2,
and further let by be the Bézier points of q(x) over the simplex ud ... u. Then it follows
from Theorem 2.1 that

ci=b; foralli<(1,...,1)

and furthermore that the points b; and the points ¢, fori = e; + e;, ¢ fixed, j = 0,...,s,
span the same plane. Thus we have the following property:

Lemma 5.1 The Bézier and the B-spline control nets of the quadratic polynomial q(x)
above are identical over the intersection of their domains.

Hence we say that the B-spline control net of the quadratic polynomial p(x) is convex if
the associated Bézier net of p(x) is convex.



6 Splines with convex control nets 7

Next consider again a polynomial of degree n
p(x) = Y iBi(x)
li|=n

given by its B-spline representation over the knot clusters ug, a = 0,...,s68=0,...,n.
Let p[x; ... x,] be the polar form of p(x). Then the quadratic polynomials

pi(x)=pxxuy...u) 4 ...u5...ul 4], lil=n-2,
have the B-spline representations
pi(x) = ) cigyBi(x)
lil=2
over the knots u¢ a=20,...,508 =0,1,2. Now we can state the main result of this

] ta+0?
section.

Theorem 5.2 If the control nets of all quadratic polynomials pi(x), |i| = n—2, are convez,
then p(x) is convex over the intersection Q of all simplices uf ... uf , |i| < n.
Let us sketch the proof: Let DZ f(x) be the second derivative of the function f with respect
to the direction v. Then one can use, e.g., the multidimensional analog of Proposition 8.2
in [Ram87] to derive
n(n—1)
Dip(x) = ———> > (Dym)Bilx) -

2 .
[i|l=n—2

Since the p; have a convex Bézier net, they are convex functions, see e.g. [DMS&8]. Hence
the second directional derivatives DZp; are non-negative which implies that DZp(x) is
non-negative and thus the convexity of p(x) over Q.

6 Splines with convex control nets

The results above for a single B-patch can be extended to splines:

Let u®, « € 7, be the vertices of some triangulation 7 covering the entire space R’. Here we
think of 7 as a subset of Z°T! such that the simplices u® ... u%,a = (ag,...,a;) € 7 form
the triangulation. In the following we will always assume that 7 contains each simplex only
once, i.e. for any a € 7 there is no other permutation of a in 7. Further let uz, 5=0,...,n
be associated knot clusters and assume that the intersections 24 of all simplices u?oo N |
li| < n, are non-empty for all a € 7. Then consider the spline

@)=Y Y EBAx)

b

where Bf* is the B-spline over the knots uj, & = do,..., 650 =0,...,7. In order to define
the control net of s(x) as a piecewise linear function we need the abscissae

lo
S D
£B=0

a=ag,...,as
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Then for each a € 7 we construct a triangulation having the abscissae x{* as vertices as
described in Section 4 using the loops

a __ a1 aop _
vg=u?—u" , ...,  vi=1u

In order to obtain a correct triangulation of all x§, a € 7', we need to restrict the positions
of the knots. Such a condition is given by the following extension of Theorem 4.2:

Theorem 6.1 Let Q,, be the intersections
Q. = N{[v5 ... v?][0,1/2)** | a€ T, a is a coordinate of a}

and for all o € Z and § = 0,....,n let ug € u® 4+ Q. Then any two simplices of the
triangulation of the x§{', a € 7, |i| = n, have disjoint interiors.

Theorem 6.1 enables us to define the control net of s(x) as the piecewise linear function
which is composed of the control nets of the patches

sa(x)= Y 'Bx), X€Qa .

li]=n

Note that the control nets of the patches over the sets Q5 are always continuous, but the
entire control net of s(x) is continuous only if ¢f* = c}o whenever x{ = X}). Now, for this

control net of s(x) we can state the main result presented in this paper:

Theorem 6.2 Let the control net of s(x) be continuous and such that the subnets for all
patches sa(x), x € Qa, satisfy the conditions of Theorem 5.2. Then the spline function s(x)
is convez for all x € R.
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