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Many properties of computational geometry and its applications do not need
the distance of points but only the concepts of parallelism and ratio. Without
additional effort most of the following topics can be studied in spaces of any
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Abstract
The following recalls the facts and terminology mostly used in
Geometry. It may serve also as a first introduction to geometric tools,
for more in depth coverage see the list of references, in particular [7].

Affine Fundamentals

dimension.

1.1 Points and Vectors

In general a point in n-space is fixed by its coordinates with respect to some
Cartesian system. Nevertheless, we start our observations with affine as-

pects?.

IMatrix notation is preferred. To simplify the notation, a point as well as its coordinate
column will be denoted by the same bold letter. Note that this notation depends on the

coordinate system.



Let a = [ay...a,]" and b = [3;...3,]" denote two points. Their differ-
ence v =b — a is called a vector, and one has b = a 4+ v. In particular the
column o = [0...0]" denotes the null-vector.

Let ag,...,a; denote d + 1 points in n-space, d < n. The d vectors
v, =a;,—ag, ¢t = 1,...,d, are called linearly dependent if a;v;+---+agvy =
o, with at least one non-zero «;, otherwise these vectors are called linearly
independent. If vq,..., vy are linearly independent, then they span a linear
space V?, and the points ag, ..., a, are called affinely independent and span
an affine space A? of dimension d.

1.2 Affine Systems

A point ag and n linearly independent vectors v; define an affi= ne system
[ag, Vi ...Vv,] of A", In this system every point p = [1; ...n,]" may be written
uniquely as

p=ao+&vi+ o+ v, = ag + Ax, (1)
where A = [vy...v,] and x = [£...§,]". The ¢ are called the affine
coordinates of p with respect to [ag, vy ...v,], where ag is called the origin
of the affine system.

Figure 1: Affine and barycentric coordinates.

To distinguish between points and vectors described by elements a of [&"
one may add a further coodinate, ¢, where

{ 0 . { vector,

€= if a represents a .

1 point.

This convention can help to avoid errors in handling points and vectors, see

also Subsection 4.1 on homogeneous coordinates.



1.3 Barycentric Coordinates

Let ag,...,a, denote n + 1 affinely independent points of A™ and let v; =
a;, — ap. One may rewrite equation (1) as

p=%as+ a4+, H=1-(G++&6).

The &, ...,&, are called barycentric coordinates of p with respect to the
frame [ag...a,]. Note that & +---+ &, = 1. Note also that any n of the &,
it # j, represent affine coordinates of p with respect to an affine system with
origin a;.

Immediately follows that a vector v.= b — a has barycentric coordinates
Vo, ...,v, that sum to zero, vy + --- + 1, = 0. Note that the sum of the
coordinates & or v; corresponds to ¢ above.

1.4 Affine Subspaces and Parallelisi

Let points ag,...,a; € A" be given. The point

p:foao+fla1—|-...—|-§dad7 1:§0+§1++§d7

is called an affine combination of the points a;. Let d < n and let the points
a; be affinely independent. Then they span a d-dimensional subspace C A™.
Using barycentric coordinates, its points are written as affine combination=
s (in terms of affine coordinates) as

p=ay+&vi+ o+ v, (2)

where v; = a; — ag. This subspace is called a line, plane or hyperplane if
d=1,2orn—1, respectively.

For any given p and given ag,vy,..., vy as elements of R”, the linear
combination (2) represents a system of n linear equations for the &. It is
solvable only if p lies in the subspace.

Conversely, for varying ¢; the presentation (2) can be viewed as the solu-
tion of some linear system of n — d equations for an unknown p = [, ...n,]"
In particular, if d = n — 1, this system consists of one linear equation, say

up +u'p = uo+ i + -+ Ui, =0,
or, using barycentric coordinates of p,

uono + (uy + wo)nr + - -+ + (wn + wo)nn = 0,



where additionally no +---+1n, =1.

Hyperplanes are called linearly independent if the rows [ugug ... u,] of
their coefficients are linearly independent. Consequently, a subspace of di-
mension d of A” can be obtained as the intersection of n —d linearly indepen-
dent hyperplanes. In particular, a point can be obtained as the intersection
of n hyperplan= es.

Note that the points of an affine subspace are the solutions of an in-
homogeneous linear system, while their differences, the vectors, solve the
correspondin= g homogeneous system.

A line p = a+Av is called parallel to a subspace B C A" if the coordinates
of its points solve th= e homogeneous system corresponding to B. Moreover,
two affine subspaces A and B are parallel if all lines of A are parallel to B,
or Vice versa.

1.5 Affine Maps and Axonometric Images

Equation (1) allows two interpretations. First, it expresses p with respect to a
new affine system [ag, vy ...Vv,], where x = [£;...£,]" are the new coordinates
of p . For example, the equation uy + u’p = 0 of a hyperplane becomes
go + q'x = 0 in terms of the new coordinates , where gy = ug + u'ay and
q =u'A.

Second, it represents an affine map ¢ : X — p, where x and p represent
affine coordinates of two points. In particular, ¢ maps the origin o = [0...0]
and the unit vectors? e; = [6;...0;,]" into ag and v;, i = 1,...,n , respec-
tively. This important property defines the map uniquely and allows a simple
construction and analysis of an affine map. Note that ¢ maps the points x
of the hyperplane ¢y + q'x = 0 above into the points p of the hyperplane
up + u'p = 0.

If the barycentric coordinate columns of points are denoted by the corre-
sponding hollow letters, ¢ is written as

p=Ax, where A =[aga; ==...a,].
Note that affine maps preserve affine combinations, i.e. one has

dléoao + - - + Laaq] = &loao] + -+ - + Lilp=ad].

28; j is the so-called Kronecker delta, §; ; =1 if i = j and = 0 else



| =

Figure 2: Affine map and new affine system.

They also preserve parallelism and the ratio of parallel distances, i.e. w = A\v
is mapped into [¢pw] = A[oV].

If the v; are linearly dependent, the map is degenerate. In particular,
if ngy1 = ... = n, = 0 for all x, the map creates an axonometric image as
used in descriptive geometry. Simple examples are the so-called cavalier and
military projections, see [7].

izl

Figure 3: Cavalier and military projection.

1.6 Affine Combinations and A-Frame

Many algorithms in CAGD are based on repeated affine combinations. Con-
sider two points, ag and a;. The affine combination

p=(1—-oa +aa



represents a point on the line spanned by ap and a;, and « represents an

affine scale with o« = 0 corresponding to ap and o = 1 corresponding to =a;.

The term r[p;apa;] = a/(1 —«) is called the ratio of p with respect to ag a;.
Consider three points ag, a;, az, and the affine combinations

boz(l—a)a0+aa1 and b1 = (1—oz)a1—|—oza2,
both related by the same «, and the subsequent affine combination

p = (1-p)bo+ b
= (1—a)(1=PRag+ (a(l =F)+ (1 — a)f)a; + afas. (3)
Obviously, the resulting point p is symmetric in & and 3, meaning that

a and [ can be interchanged. This symmetric configuration is referred to as
A-frame lemma and is a fundamental tool in de Casteljau’s work [16].

aj

Figure 4: A-frame lemma and affine A-frame.

Let a = 3. Then (3) reduces to
p = (1 —a)’as+2a(l —a)a; + a’a,.

For fixed a the involved six points represent the so-called affine A-Frame,
which is of great importance in Bernstein-Bézier methods. For varying «
the point p traces out a parabola, defined by ay and a; with tangents that
intersects in aj;.



2 Conic Sections and Quadrics

The simplest figures in affine space besides lines and planes are conic sections,
or more general, quadrics. They are studied conveniently by their quadratic
equations.

2.1 Quadrics in Affine Space

In an affine space a quadric Q consists of all points x satisfying a quadratic
equation

Q(x,x) = x'Cx + 2c'x + ¢ =0,

where C' = C" is a symmetric non-zero matrix.

The intersection with a subspace is a quadric again. In particular, if the
subspace is a line, one gets a pair of points. Note that these points can be
real, coalescing or non-real.

/

Figure 5: Midpoint and singular point.

A point m is called a midpoint of Q if Q(x,x) is symmetric with respect
to m. This is the case for all solutions of

Cm+c=o.
Note that a solution may not exist. If a midpoint s lies on Q, it satisfies
Cs+c=0, and c's+c=0,

and is called a singular point, while Q degenerates to a cone.



2.2 Tangents and Polar Planes

A line L, given by x = q + Av, where q is a point of Q, intersects Q in
a second point. If both points coalesce, then L is a tangent of Q at q and
satisfies

[Cq+c]'v=0.

If additionally v'Cv = 0, then L lies completely on Q, and is called a gener-
atrix of Q. Let v = q — x, then L is a tangent if

Q(q,x) =[Cq+c]'x+c'q+c=0.

This equation for x represents a plane, the tangent plane of Q at q.

X
? P
: F; P
L
Figure 6: Tangent and polarity.

Replacing q by an arbitrary point p gives
Qp,x) = p'Cx + ¢ [x +p] + ¢ = 0.

It represents the polar plane P of the pole p with respect to Q. It intersects
Q in points q with tangent planes through p. Note that these points q need
not be real. Note also that Q(p,x) is symmetric in p and x.

A pair of points p,x is called conjugate with respect to Q if Q(p,x) =
0. Hence the points of Q are self-conjugate with respect to Q. A pair of
directions u, v is called conjugate with respect to Q if u’C'v = 0. Conjugate
elements play an important role when investigating quadrics in affine space.

Quadrics differ by the dimension of their midpoints or singularities, the
dimension of their real generatrices and — in affine space — by the shape of
their extensions to infinity.



2.3 Pascal’s and Brianchon’s Theorems

Conic sections have been studied extensively for several centuries. Of partic-
ular interest are the following two theorems on conic sectioncs in the plane:

The three pairs of opposite sides of a hexagon inscribed to a conic
section meet in three points of a line (Pascal’s theorem).

The three connections of opposite points of a hexilateral circum-
scribed to a conic section intersects in one point (Brianchon’s
theorem).

Figure 7: Pascal’s and Brianchon’s theorems.

As a consequence of these theorems, a conic section is uniquely deter-
mined by five points or five tangents in the plane.

Both theorems are of particular interest if pairs of consecutive points or
tangents coalesce. E.g., let ag, a; denote two points of a conic section with
tangents meeting at a point a;. Let the points

bo = (1 — Oé)ao + aag, and b1 = ﬁal + (1 — ﬁ)ag. (4)

span a third tangent. Its point of contact p is easily obtained from Brian-
chon’s theorem,

p = [Bbo + ab,]/(a + ),

where o and /3 as in (4), see also [6].



Figure 8: Affine representation of the projective A-frame.

3 Euclidean Space

The affine space A" is a Euclidean space denoted by E"™ and the correspond-
ing vector space V" is a Euclidean vector space if a dot product < ab >=a’b
is give= n.

3.1 Cartesian Coordinates

An affine system [ag,vy...v,] of E" is called Cartesian if® < v;v; >= 4,
and it is positively oriented if det][vy...v,] > 0.

In Cartesian coordinates the distance of two points p and q is given by
the length ||v|| of the vector v=q — p,

dist(pq) = [[v] = Vv'v,
and the angle ¢ of two vectors u and v is given by
u'v = [[ull]|v] cosp.

In particular, both vectors are called orthogonal if cosp = 0, i.e. if u’v = 0.

3.2 Gram-Schmidt Orthogonalization

A Cartesian system [ag, by ... by] of a subspace or Euclidean space itself can
easily be constructed from an affine system [ag, vi--- vy in E” using the

3see footnote 2
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Gram-Schmidt orthogonalization by alternating computation of the coeffi-
cients A; ; and p; as follows:

Set by = pyvy such that |[by| =1 .
Set by = p2(va + Ag1by) such that by is orthogonal to by and ||bs|| = 1.=

Set by = pta(va + Agibi + - + Aga—1bay),
such that by is orthogonal to by,..., by and ||by|| = 1.

Note that in a Cartesian system the dot product is written as < uv >= u'v.

3.3 Euclidean Motions and Orthogonal Projections

If the frame [ag, v ...V,] is Cartesian, then (1) represents a Cartesian coor-
dinate transformation or a Euclidean motion. Simple examples of motions
in 3-space are the translation by v and the rotation around the 3-axis by an
angle (, in matrices written as

1 0 0 cos( —sin¢ 0
p=v+]|0 1 0 |x and p=o+ | sin¢ cos¢ 0 |x,
0 0 1 0 0 1

respectively. In particular, let p = B;() x describe the rotation around the

Figure 9: Translation and rotation.

i-axis by some angle ¢. Any motion in 3-space can be written as
P =V + B3(7)Bi(8)Bs(a) x,

where «, 3, v are the so-called Eulerian angles.

11



Figure 10: Isometric and dimetric orthogonal projection.

Any Euclidean motion followed by a map setting the coordinates n411,...,n,
of the image p to zero results in an orthogonal projection onto some d-
dimensional subspace .

It should be mentioned that orthogonal projections are more informative
than simple parallel projections and much more informative than perspectiv-
ities. They are the only projections that map spheres to circles. Therefore
orthogonal projections should be preferred in presenting technical objects.

3.4 Quadrics in Euclidean Space

If the vectors v; of the Cartesian system [ag, vy ... Vv,] are pairwise conjugate
with respect to a quadric Q, then the v; are principal axis directions of Q
and (' is a diagonal matrix.
One easily checks that for a conic section given by its equation a rotation
by an angle o where
tan 2o = 2¢12/(e11 — ¢22)

turns the coordinate axes into the axis directions of Q and transforms ' into
diagonal form.

4 Projective Fundamentals

Introducing points at infinity leads to projective space and allows a unified
and most elegant treatment of geometry®.

1<All geometry is projective geometry” [ Arthur Cayley 1821-1895]

12



Figure 11: Principal axis transformation.

4.1 Homogeneous coordinates

Let &1, ..., &, be affine coordinates of a point in A™ with respect to an affine
frame [ag, vy ...Vv,] as above. Set & = §;/By with some By # 0. Then the
80,031, - . ., B, are homogeneous coordinates with respect to the given affine

frame. Note that any non-zero multiple of the homogeneous coordinate col-
umn b = [B 31 ...03,]" represents the same point. Note also that a point
p = o is undefined. It represents the so-called forbidden point.

As before 3; = 0,1 # 0 represents the coordinate hyperplane & = 0.
Further, By = 0 represents points at infinity lying in the infinite or ideal
hyperplane 3y = 0. An affine space A" together with its ideal hyperplane
forms a projective space P", the projective extension of A" .

The advantage of this extension is the symmetry of homogeneous coor-
dinates. Points at infinity are handled as points in any other plane. In
particular, ideal points allow to intersect parallel lines and subspaces — at
infinity. Note that any non-zero multiple of a vector represents the same
point at infinity.

Note also that Gy = 0 and Gy # 0 correspond to ¢ = 0 and ¢ = 1 in
Subsection 1.2 above.

4.2 Projective Coordinates

Let ag,...,ay be linearly independent columns of homogeneous coordinates
of d + 1 points in P” with integrated factors such that the sum a = ay +
-+ 4 ay represents a given further point a called the unit point. These
d + 2 points determine a projective frame [ag, ..., a,;a] of some projective
subspace S spanned by the points ag,...,ay. Any point p of this subspace

13



can be represented by homogeneous projective coordinates x = [£...&,]" as

pp = &m0+ &iay + -+ gag, p £ 0. (5)

a 7\ b y

Figure 12: Projective system and cross ratio.

In particular, if &; = [1,al]’, and a = [1,a’]" then a is the center [ag +
...+ ay]/d of the a; and the ¢; are a multiple of the barycentric coordinates
of p with respect to the affine frame [ag ... ay].

4.3 Projective Maps

The representation (5), with matrices written as pp = Ax, allows two in-
terpretations. First it represents the point p € S by new homogeneous
coordinates 3. Second it represents a projective map ¥ : x — p of S into
P".

In particular, > maps the fundamental points x; = [6g,;...d4,]" into a; ,
i =0,...,dand the unit point [1...1]" into a. This determines the projective
map uniquely - and A except for a common factor p.

Note that a projective map does not preserve parallelism and ratio in
general, but it preserves the cross ratio

cr[xy;ab] = r[x; ab]/r[y; ab].

In particular, if er[xy;ab] = —1 then both pairs of points, xy and ab, are
in harmonic position. For example, let o be an affine scale, see Subsection
1.6, the pairs of points corresponding to —1,41 and 0,00 are in harmonic
position.

14



4.4 The Procedure of Inhomogeneizing

Any homogeneous equation in projective coordinates can easily be inho-
mogeneized by setting the homogeneizing coordinate to one. Any point
x = [£o, &ox']" or v = [0,Vv!]" is simply inhomogeneized to x or v, respec-
tively.

Figure 13: Inhomogeneizing the point of a line.

Of particular interest is the application of this procedure to the point x
of a projective line given by

px=MXa+ ub.

Let p = 1 and let a = [ag, apa’]’ and b = [, Bob!]’. Then inhomogeneizing
x = [€o, £ox']" results in the affine combination

x =aa+ b, where o« = Xag/& and 3 = pu[Bo/&. (6)

Similar results are obtained by inhomogeneizing the points of a projective
subspace (5) of higher dimension.

4.5 Repeated Projective Combinations

Repeated affine combinations and A-frames are often used in CAGD to com-
pute polynomial curves and surfaces and can also be applied to the homo-
geneous coordinates of rational curves and surfaces. It is useful to inhomo-
geneize the resulting projective combinations by the procedure demonstrated
above.

Moreover, after an initial inhomogeneizing one can continue with the
affine representation of the projective A-frame presented in Subsection 2.3.
For more details on this procedure and its applications see [6].

15



4.6 Quadrics in Projective Space

In homogeneous or projective coordinates i the equation of a quadric Q
simplifies to

Q(xx)=x"Cx =0, where C'= C,

and the polarity is written as

Q(px) =p'Cx =0.

Note that in homogeneous coordinates the midpoint of Q is the pole of
the infinite plane. Note also that Q is a cylinder, if it has a singular point
at infinity, etc.

4.7 Parametrizing a Quadric and Its Equation

If a quadric Q is given by its equation Q(xx) = 0, and g represents a point
of Q, ie., Q(qq) =0, then

xp=Q(pp)g-2Q(pa)p

is a parametrization of QQ, which is quadratic in the coordinates of p. Setting,
eg., P = pPoCo+ -+ Pa_1(s_1, where the p; are suitably choosen, it is
also quadratic in the homogeneous (;. Note that one may use any other
representation for p, e.g., polar coordinates with the center q.

Figure 14: Parametrizing a quadric.

Conversely, the equation Q(xxx%) = 0 of a quadric in A” or P™ depends
on r = (n+ 1)(n 4+ 2)/2 homogeneous coefficients, the elements of C. Let
r — 1 pairs of conjugate points, p; and q; , be given, and let x denote some

16



arbitrary point of Q. Then the r — 1 conditions Q(p; q;) = 0 together with
(3 3) = 0 form a homogeneous linear system for the r unknown coefficients
of C. Setting its determinant to zero results in the equation of Q.

5 Duality

In homogeneous or projective coordinates the equation of a hyperplane sim-
plifies to

u'x = ugo + uréy + - + unk.

The u; are homogeneous coordinates of the hyperplane — just as the ¢; for
. Homogeneous coordinates can either represent a point or a hyperplane.
Consequently any configuration of points and hyperplanes has a dual config-
uration of hyperplanes and points, where the dual of a point or hyperplane is
a hyperplane or point represented by the same coordinates. More generally,
the hyperplanes containing some points by, ..., b =; are dual to the points
of intersection of the hyperplanes by,..., by , and vice versa.

Figure 15: Quadrangle and dual quadrilateral.

Note that the duality depends on the dimension of the space. For ex-
ample, Pascal’s and Brianchon’s configuration are dual in the plane, where
points and tangents of a conic section are dual elements.

6 Osculating Curves and Surfaces

An important task in CAGD is to connect curves and surfaces smoothly.

17



6.1 Curve and Surface

A curve x(¢) in affine space A" is called regular at ¢, if x(#9) # o.

Figure 16: Contact of order two.

The curve x(¢) is said to have a contact of order r at ¢, with a surface
given by the equation F(x) = 0=, if it is regular at ¢y and if F(x(¢)) and
its derivatives up to order r vanish at ¢ = ¢y3. This means geometrically that
the curve has r + 1 coalescing points in common with the surface at ¢t = .
Note that this definition does not depend on the parametrization of x(t).
Note also that by its geometric meaning the contact of order r is projectively
invariant.

6.2 Curve and Curve

A second curve y(s) given by the intersection of a number of surfaces contacts
x(1) at top with order r if x(¢) contacts all these surfaces with at least order
r.

If the second curve y(s) is given parametrically, then both curves have
contact of order r at tg if there exists a regular reparametrization t = ¢(s) for
x(1) such that the Taylor expansions of x(#(s)) and y(s) agree at to = t(so)
up to order r. This condition can be expressed by the chain rule as a system
of r + 1 linear equations. Therefore contact of order r is referred to as chain
rule continuity.

For example, a curve and its osculating circle at a point ¢y have contact
of order 2.

18



6.3 Surface and Surface

Two surfaces have contact of order r at p if all regular curves that lie on one
of them and meet p have at least contact of order r with the other surface.
This means that after a suitable reparametrization the Taylor expansions of
both surfaces at p agree up to order r.

6.4 Contour Lines, Reflection Lines and Isophotes

There are some important helpful curves to check the smoothness of surfaces
visually.

Figure 17: Reflection line and isophote.

A reflection line on a surface consists of all points p whose con-
nection with some fixed point e, the eye, is reflected into a ray
that meets a given fixed line L.

An isophote on a surface consists of all points p whose connection
with the eye e forms a fixed angle with the surface normal at p.

Contour lines are special isophotes. They consist of all points p
where the tangent plane meets e.

In general, on composite surfaces contur lines, reflection lines and isophotes
have a lower order of contact than the surfaces themselves.

Note that all three kinds of curves may consist of several parts. Note also
that the use of infinite elements e and L simplifies their computation.
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Figure 18: Contour lines.

7 Differential Fundamentals

Arclength, curvature and torsion describe the local properties of a curve, the
curvature of so-called principal normal sections describe the local properties
of surfaces. The main tool for such investigations is a local frame.

7.1 Arc Length and Osculating Plane
Let a curve in E® be given parametrically as x = x(¢) and let
ag = X(to), Vi = X(to), Vo = X(to),

denote its point and first two derivatives at some t,. If vi # 0, its tangent
at ag is given by
p=ay+ vy

If vi A vy # o, its osculating plane at ag is given by
p=ap+ v+ v,

The differential term ds = ||x(t)||dt is called the arc element of x(¢), and
the integral

s(t) = [ Ix(t))ds

its arc length, beginning at ¢3. The arc length represents the natural param-
eter of the curve. In most cases it can only be computed approximately.

20



7.2 Curvature and Torsion

The natural parameter s is very helpful to derive general curve properties.
E.g., let a(s) and ((s) denote the angles of the tangent and the osculating
plane at s with the tangent and osculating plane at some s, respectively,
and let the prime ’ denote differentiation with respect to arc length. Then

k=0a'(sg) and 7= '(s0)

are called curvature and torsion of x(#) at sq, respectively. Note that p = 1/x
represents the radius of the osculating circle.

b;
by

b, b,

Figure 19: Curvature and torsion of a rational Bézier curve.

For example, a rational curve of degree n with Bézier points b; = [3;, 3;b]*
has the span of by, by as tangent at by, and the span of by, by, by as oscu-
lating plane at by. At £ = 0 one has

-2
T(O) n ﬁOﬁS c

_ n—100 b -
O =" a = O="55w

where a, b, ¢ denote the distances of by from by, of by from the tangent at
bo, and of bz from the osculating plane at by, respectively.

7.3 The Frenet Frame

Gram-Schmidt orthogonalization applied to x, X, X at x(fo) results in the
so-called Frenet frame [t mb] , which depends on ¢. One has

0 —x 0
[t'm'b]=[tmb] |« 0 -7 |,
o = 0

which is an important tool for further investigations, see [3], [5] and [9].
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Figure 20: Curve with derivatives, osculating plane and Frenet frame.

7.4 Curves on Surfaces

Let a surface be given parametrically as
x = x(u,v) = x(u).

The lines u = fixed, v = fixed are called iso-lines. If the partial derivatives
x, and x, are linearly independent, the surface normal is defined by

n =[x, A X,|/||xu A x|

Let u = u(¢) denote some curve in the u-plane. Then, in general, x =
x(u(t)) represents a curve on the surface. The arc element ds of this curve
is given by its square

ds®* = (EW* + 2 Fuv + Go?)dt?,
where F = x!x, , F' = x!x, , and G = x/x, = are well-known as Gaussian

first fundamental quantities. Note that ||x, A x,[|? = F G — F?.

7.5 Meusnier’s Sphere and Dupin’s Indicatrix

Consider all curves on a surface meeting a given point p with a given tangent
t there. One has :

The osculating circles of these curves lie on a sphere (Meusnier’s
sphere).
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Figure 21: Local frames on a surface.

It follows that the radius of the osculating circle of a surface curve is given
by p = pocosd, where 6 denotes the angle between the surface normal and
the osculating plane and pg is the radius of Meusnier’s sphere. The inverse
ko = 1/po is called the normal curvature of the surface at p in direction of
t. Hence it is sufficient to know the curvature of one of these curves and the
angle of its osculating plane with n in order to compute all others= =2E

Figure 22: Meusnieur’s sphere and Dupin’s indicatrix.

In general, the normal curvature xq differs for different t. For all tangent
directions t at p consider the points

q=P+pot
of the tangent plane with distance |/po from p. One has:

The points q lie on a conic section with center p (Fuler’s theo-
rem).
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This conic section is also known as Dupin’s indicatrix. Its axis directions
are called the principal directions, and the corresponding values of k = 1/pg
are called the principa= | curvatures of the surface at p, mostly denoted by
k1= 1/p1 and ke = 1/ps.

Note that Dupin’s indicatrix can be an ellipse, a pair of parallel lines, or
a hyperbola. In case of a hyperbola it has two real asymptotic directions .
The normal curvature is zero there and py is infinite.

If k1 = ko , then Dupin’s indicatrix is a circle and p is called an umbilical
or spherical point.

7.6 The Curvatures of a Surface

Because of its geometric meaning Dupin’s indicatrix and consequently the
principal curvatures x; and k, at a point p do not depend on the parametric
representation of the surface.

The expressions

K =r1ky and H = (k1 +k2)=/2

are called Gaussian curvature and mean curvature of the surface at p, respec-
tively. Both give important information about the smoothness of a surface.
Moreover, Gauss has shown that K depends on E, F', and G and their deriva-
tives only. This means that K depends on the inner measurements on the
surface only and is invariant under deformations of the surface that do not
distort the measurement of lengths on the surface.
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