
Geometric Fundamentals

Wolfgang Boehm and Hartmut Prautzsch

Angewandte Geometrie und Computergraphik

Technische Universit�at Braunschweig �
Betriebs� und Dialogsysteme

Universit�at Karlsruhe

November �� ����

Abstract

The following recalls the facts and terminology mostly used in

Geometry� It may serve also as a �rst introduction to geometric tools�
for more in depth coverage see the list of references� in particular �	
�

� A�ne Fundamentals

Many properties of computational geometry and its applications do not need
the distance of points but only the concepts of parallelism and ratio� Without
additional e�ort most of the following topics can be studied in spaces of any
dimension�

��� Points and Vectors

In general a point in n�space is �xed by its coordinates with respect to some
Cartesian system� Nevertheless� we start our observations with a�ne as�
pects��

�Matrix notation is preferred� To simplify the notation� a point as well as its coordinate
column will be denoted by the same bold letter� Note that this notation depends on the
coordinate system�

�



Let a � ��� � � � �n	t and b � ��� � � � �n	t denote two points� Their di�er�
ence v � b � a is called a vector� and one has b � a 
 v� In particular the
column o � � � � � � � 	t denotes the null�vector�

Let a�� � � � �ad denote d 
 � points in n�space� d � n� The d vectors
vi � ai�a�� i � �� � � � � d� are called linearly dependent if ��v�
 � � �
�dvd �
o� with at least one non�zero �i� otherwise these vectors are called linearly
independent� If v�� � � � �vd are linearly independent� then they span a linear
space Vd� and the points a�� � � � �ad are called a�nely independent and span
an a�ne space Ad of dimension d�

��� A�ne Systems

A point a� and n linearly independent vectors vi de�ne an a�� ne system
�a��v� � � �vn	 ofAn� In this system every point p � ��� � � � �n	t may be written
uniquely as

p � a� 
 ��v� 
 � � �
 �nvn � a� 
Ax� ��

where A � �v� � � �vn	 and x � ��� � � � �n	t� The �i are called the a�ne
coordinates of p with respect to �a��v� � � �vn	� where a� is called the origin
of the a�ne system�

Figure �� A�ne and barycentric coordinates�

To distinguish between points and vectors described by elements a of Rn

one may add a further coodinate� �� where

� �

�
�

�
if a represents a

�
vector�

point�

This convention can help to avoid errors in handling points and vectors� see
also Subsection ��� on homogeneous coordinates�
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��� Barycentric Coordinates

Let a�� � � � �an denote n 
 � a�nely independent points of An and let vi �
ai � a�� One may rewrite equation �� as

p � ��a� 
 ��a� 
 � � �
 �nan� �� � �� ��� 
 � � �
 �n�

The ��� � � � � �n are called barycentric coordinates of p with respect to the
frame �a� � � �an	� Note that �� 
 � � �
 �n � �� Note also that any n of the �i�
i �� j� represent a�ne coordinates of p with respect to an a�ne system with
origin aj �

Immediately follows that a vector v � b� a has barycentric coordinates
��� � � � � �n that sum to zero� �� 
 � � � 
 �n � �� Note that the sum of the
coordinates �i or �i corresponds to � above�

��� A�ne Subspaces and Parallelism

Let points a�� � � � �ad � An be given� The point

p � ��a� 
 ��a� 
 � � �
 �dad� � � �� 
 �� 
 � � �
 �d �

is called an a�ne combination of the points ai� Let d � n and let the points
ai be a�nely independent� Then they span a d�dimensional subspace � An�
Using barycentric coordinates� its points are written as a�ne combination�
s �in terms of a�ne coordinates as

p � a� 
 ��v� 
 � � �
 �dvd � ��

where vi � ai � a�� This subspace is called a line� plane or hyperplane if
d � �� � or n � �� respectively�

For any given p and given a��v�� � � � �vd as elements of Rn� the linear
combination �� represents a system of n linear equations for the �i� It is
solvable only if p lies in the subspace�

Conversely� for varying �i the presentation �� can be viewed as the solu�
tion of some linear system of n�d equations for an unknown p � ��� � � � �n	

t�
In particular� if d � n� �� this system consists of one linear equation� say

u� 
 utp � u� 
 u��� 
 � � �
 un�n � ��

or� using barycentric coordinates of p�

u��� 
 �u� 
 u��� 
 � � � 
 �un 
 u��n � ��

�



where additionally �� 
 � � �
 �n � � �
Hyperplanes are called linearly independent if the rows �u� u� � � � un	 of

their coe�cients are linearly independent� Consequently� a subspace of di�
mension d of An can be obtained as the intersection of n�d linearly indepen�
dent hyperplanes� In particular� a point can be obtained as the intersection
of n hyperplan� es�

Note that the points of an a�ne subspace are the solutions of an in�
homogeneous linear system� while their di�erences� the vectors� solve the
correspondin� g homogeneous system�

A line p � a
�v is called parallel to a subspaceB � An if the coordinates
of its points solve th� e homogeneous system corresponding to B� Moreover�
two a�ne subspaces A and B are parallel if all lines of A are parallel to B�
or vice versa�

��� A�ne Maps and Axonometric Images

Equation �� allows two interpretations� First� it expresses p with respect to a
new a�ne system �a��v� � � �vn	� where x � ��� � � � �n	t are the new coordinates
of p � For example� the equation u� 
 utp � � of a hyperplane becomes
q� 
 qtx � � in terms of the new coordinates � where q� � u� 
 uta� and
qt � utA �

Second� it represents an a�ne map 	 � x� p� where x and p represent
a�ne coordinates of two points� In particular� 	 maps the origin o � �� � � � �	
and the unit vectors� ei � �
i�� � � � 
i�n	t into a� and vi� i � �� � � � � n � respec�
tively� This important property de�nes the map uniquely and allows a simple
construction and analysis of an a�ne map� Note that 	 maps the points x
of the hyperplane q� 
 qtx � � above into the points p of the hyperplane
u� 
 utp � ��

If the barycentric coordinate columns of points are denoted by the corre�
sponding hollow letters� 	 is written as

p � Ax � where A � �a� a� �� � � �an	�

Note that a�ne maps preserve a�ne combinations� i�e� one has

	���a� 
 � � �
 �dad	 � ���	a�	 
 � � �
 �d�	�
�
ad	�

��i�j is the so�called Kronecker delta� �i�j � � if i � j and � � else

�



Figure �� A�ne map and new a�ne system�

They also preserve parallelism and the ratio of parallel distances� i�e� w � �v
is mapped into �	w	 � ��	v	�

If the vi are linearly dependent� the map is degenerate� In particular�
if �d�� � � � � � �n � � for all x� the map creates an axonometric image as
used in descriptive geometry� Simple examples are the so�called cavalier and
military projections� see ��	�

Figure �� Cavalier and military projection�

��� A�ne Combinations and A�Frame

Many algorithms in CAGD are based on repeated a�ne combinations� Con�
sider two points� a� and a�� The a�ne combination

p � ��� �a� 
 � a�

�



represents a point on the line spanned by a� and a�� and � represents an
a�ne scale with � � � corresponding to a� and � � � corresponding to �

�
a��

The term r�p�a� a�	 � ������ is called the ratio of p with respect to a� a��
Consider three points a�� a�� a�� and the a�ne combinations

b� � �� � �a� 
 � a� and b� � �� � �a� 
 �a��

both related by the same �� and the subsequent a�ne combination

p � �� � �b� 
 �b�

� �� � ���� �a� 
 ����� � 
 �� � ��a� 
 ��a�� ��

Obviously� the resulting point p is symmetric in � and �� meaning that
� and � can be interchanged� This symmetric con�guration is referred to as
A�frame lemma and is a fundamental tool in de Casteljau�s work ���	�

Figure �� A�frame lemma and a�ne A�frame�

Let � � �� Then �� reduces to

p � ��� ��a� 
 ���� � �a� 
 ��a��

For �xed � the involved six points represent the so�called a�ne A�Frame�
which is of great importance in Bernstein�B�ezier methods� For varying �
the point p traces out a parabola� de�ned by a� and a� with tangents that
intersects in a��
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� Conic Sections and Quadrics

The simplest �gures in a�ne space besides lines and planes are conic sections�
or more general� quadrics� They are studied conveniently by their quadratic
equations�

��� Quadrics in A�ne Space

In an a�ne space a quadric Q consists of all points x satisfying a quadratic
equation

Q�x�x � xtCx
 �ctx
 c � ��

where C � C t is a symmetric non�zero matrix�
The intersection with a subspace is a quadric again� In particular� if the

subspace is a line� one gets a pair of points� Note that these points can be
real� coalescing or non�real�

Figure �� Midpoint and singular point�

A point m is called a midpoint of Q if Q�x�x is symmetric with respect
to m� This is the case for all solutions of

Cm
 c � o�

Note that a solution may not exist� If a midpoint s lies on Q� it satis�es

C s
 c � � � and cts
 c � ��

and is called a singular point� while Q degenerates to a cone�
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��� Tangents and Polar Planes

A line L� given by x � q 
 �v� where q is a point of Q� intersects Q in
a second point� If both points coalesce� then L is a tangent of Q at q and
satis�es

�Cq
 c	tv � ��

If additionally vtCv � �� then L lies completely on Q� and is called a gener�
atrix of Q� Let v � q� x� then L is a tangent if

Q�q�x � �Cq
 c	tx
 ctq
 c � ��

This equation for x represents a plane� the tangent plane of Q at q�

Figure �� Tangent and polarity�

Replacing q by an arbitrary point p gives

Q�p�x � ptCx
 ct �x
 p	 
 c � ��

It represents the polar plane P of the pole p with respect to Q� It intersects
Q in points q with tangent planes through p� Note that these points q need
not be real� Note also that Q�p�x is symmetric in p and x�

A pair of points p�x is called conjugate with respect to Q if Q�p�x �
�� Hence the points of Q are self�conjugate with respect to Q� A pair of
directions u�v is called conjugate with respect to Q if utCv � �� Conjugate
elements play an important role when investigating quadrics in a�ne space�

Quadrics di�er by the dimension of their midpoints or singularities� the
dimension of their real generatrices and � in a�ne space � by the shape of
their extensions to in�nity�
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��� Pascal	s and Brianchon	s Theorems

Conic sections have been studied extensively for several centuries� Of partic�
ular interest are the following two theorems on conic sectioncs in the plane�

The three pairs of opposite sides of a hexagon inscribed to a conic
section meet in three points of a line �Pascal�s theorem�

The three connections of opposite points of a hexilateral circum�
scribed to a conic section intersects in one point �Brianchon�s
theorem�

Figure �� Pascal�s and Brianchon�s theorems�

As a consequence of these theorems� a conic section is uniquely deter�
mined by �ve points or �ve tangents in the plane�

Both theorems are of particular interest if pairs of consecutive points or
tangents coalesce� E�g�� let a�� a� denote two points of a conic section with
tangents meeting at a point a�� Let the points

b� � �� � �a� 
 � a�� and b� � � a� 
 ��� �a�� ��

span a third tangent� Its point of contact p is easily obtained from Brian�
chon�s theorem�

p � ��b� 
 �b�	���
 ��

where � and � as in ��� see also ��	�
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Figure �� A�ne representation of the projective A�frame�

� Euclidean Space

The a�ne space An is a Euclidean space denoted by En and the correspond�
ing vector spaceVn is a Euclidean vector space if a dot product � ab � atb

is give� n�

��� Cartesian Coordinates

An a�ne system �a��v� � � �vn	 of En is called Cartesian if� � vi vj � 
i�j
and it is positively oriented if det�v� � � �vn	  ��

In Cartesian coordinates the distance of two points p and q is given by
the length kvk of the vector v � q � p�

dist�pq � kvk �
p
vtv�

and the angle � of two vectors u and v is given by

ut v � kukkvk cos��
In particular� both vectors are called orthogonal if cos� � �� i�e� if ut v � ��

��� Gram�Schmidt Orthogonalization

A Cartesian system �a��b� � � �bd	 of a subspace or Euclidean space itself can
easily be constructed from an a�ne system �a�� v� � � �vd	 in En using the

�see footnote �
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Gram�Schmidt orthogonalization by alternating computation of the coe��
cients �i�j and �i as follows�

Set b� � ��v� such that kb�k � � �
Set b� � ���v� 
 ����b� such that b� is orthogonal to b� and kb�k � ���
� � �
Set bd � �d�vd 
 �d��b� 
 � � �
 �d�d��bd���

such that bd is orthogonal to b�� � � � �bd�� and kbdk � ��

Note that in a Cartesian system the dot product is written as � uv � utv�

��� Euclidean Motions and Orthogonal Projections

If the frame �a��v� � � �vn	 is Cartesian� then �� represents a Cartesian coor�
dinate transformation or a Euclidean motion� Simple examples of motions
in ��space are the translation by v and the rotation around the ��axis by an
angle �� in matrices written as

p � v 


�
��

� � �
� � �
� � �

�
��x and p � o


�
��

cos � � sin � �
sin � cos � �
� � �

�
��x�

respectively� In particular� let p � Bi��x describe the rotation around the

Figure �� Translation and rotation�

i�axis by some angle �� Any motion in ��space can be written as

p � v
B���B���B���x�

where �� �� � are the so�called Eulerian angles�

��



Figure ��� Isometric and dimetric orthogonal projection�

Any Euclideanmotion followed by a map setting the coordinates �d��� � � � � �n
of the image p to zero results in an orthogonal projection onto some d�
dimensional subspace �

It should be mentioned that orthogonal projections are more informative
than simple parallel projections and much more informative than perspectiv�
ities� They are the only projections that map spheres to circles� Therefore
orthogonal projections should be preferred in presenting technical objects�

��� Quadrics in Euclidean Space

If the vectors vi of the Cartesian system �a��v� � � �vn	 are pairwise conjugate
with respect to a quadric Q� then the vi are principal axis directions of Q
and C is a diagonal matrix�

One easily checks that for a conic section given by its equation a rotation
by an angle � where

tan �� � �c����c�� � c��

turns the coordinate axes into the axis directions of Q and transforms C into
diagonal form�

� Projective Fundamentals

Introducing points at in�nity leads to projective space and allows a uni�ed
and most elegant treatment of geometry��

��All geometry is projective geometry� 	 Arthur Cayley �
����
��

��



Figure ��� Principal axis transformation�

��� Homogeneous coordinates

Let ��� � � � � �n be a�ne coordinates of a point in An with respect to an a�ne
frame �a��v� � � �vn	 as above� Set �i � �i��� with some �� �� �� Then the
������ � � � � �n are homogeneous coordinates with respect to the given a�ne
frame� Note that any non�zero multiple of the homogeneous coordinate col�
umn b � ��� �� � � � �n	t represents the same point� Note also that a point
p � o is unde�ned� It represents the so�called forbidden point�

As before �i � �� i �� � represents the coordinate hyperplane �i � ��
Further� �� � � represents points at in�nity lying in the in�nite or ideal
hyperplane �� � �� An a�ne space An together with its ideal hyperplane
forms a projective space Pn� the projective extension of An �

The advantage of this extension is the symmetry of homogeneous coor�
dinates� Points at in�nity are handled as points in any other plane� In
particular� ideal points allow to intersect parallel lines and subspaces � at
in�nity� Note that any non�zero multiple of a vector represents the same
point at in�nity�

Note also that �� � � and �� �� � correspond to � � � and � � � in
Subsection ��� above�

��� Projective Coordinates

Let a�� � � � �ad be linearly independent columns of homogeneous coordinates
of d 
 � points in Pn with integrated factors such that the sum a � a� 

� � � 
 ad represents a given further point a called the unit point� These
d 
 � points determine a projective frame �a�� � � � �ad �a	 of some projective
subspace S spanned by the points a�� � � � �ad� Any point p of this subspace

��



can be represented by homogeneous projective coordinates x � ��� � � � �d	t as

�p � ��a� 
 ��a� 
 � � � 
 �dad� � �� �� ��

Figure ��� Projective system and cross ratio�

In particular� if ai � ���ati	
t� and a � ���at	t then a is the center �a� 


� � �
 ad	�d of the ai and the �i are a multiple of the barycentric coordinates
of p with respect to the a�ne frame �a� � � �ad	�

��� Projective Maps

The representation ��� with matrices written as �p � Ax� allows two in�
terpretations� First it represents the point p � S by new homogeneous
coordinates x� Second it represents a projective map � � x � p of S into
Pn�

In particular� � maps the fundamental points xi � �
��i � � � 
d�i	t into ai �
i � �� � � � � d and the unit point �� � � � �	t into a� This determines the projective
map uniquely � and A except for a common factor ��

Note that a projective map does not preserve parallelism and ratio in
general� but it preserves the cross ratio

cr�xy�ab	 � r�x�ab	�r�y�ab	�

In particular� if cr�xy�ab	 � �� then both pairs of points� xy and ab� are
in harmonic position� For example� let � be an a�ne scale� see Subsection
���� the pairs of points corresponding to ���
� and ��� are in harmonic
position�

��



��� The Procedure of Inhomogeneizing

Any homogeneous equation in projective coordinates can easily be inho�
mogeneized by setting the homogeneizing coordinate to one� Any point
x � ���� ��xt	t or v � ���vt	t is simply inhomogeneized to x or v� respec�
tively�

Figure ��� Inhomogeneizing the point of a line�

Of particular interest is the application of this procedure to the point x
of a projective line given by

�x � �a 
 �b�

Let � � � and let a � ���� ��at	t and b � ���� ��bt	t� Then inhomogeneizing
x � ���� ��xt	t results in the a�ne combination

x � � a
 � b� where � � ������ and � � ������� ��

Similar results are obtained by inhomogeneizing the points of a projective
subspace �� of higher dimension�

��� Repeated Projective Combinations

Repeated a�ne combinations and A�frames are often used in CAGD to com�
pute polynomial curves and surfaces and can also be applied to the homo�
geneous coordinates of rational curves and surfaces� It is useful to inhomo�
geneize the resulting projective combinations by the procedure demonstrated
above�

Moreover� after an initial inhomogeneizing one can continue with the
a�ne representation of the projective A�frame presented in Subsection ����
For more details on this procedure and its applications see ��	�
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��� Quadrics in Projective Space

In homogeneous or projective coordinates x the equation of a quadric Q
simpli�es to

Q�xx � xtCx � �� where Ct � C�

and the polarity is written as

Q�px � ptCx � ��

Note that in homogeneous coordinates the midpoint of Q is the pole of
the in�nite plane� Note also that Q is a cylinder� if it has a singular point
at in�nity� etc�

��
 Parametrizing a Quadric and Its Equation

If a quadric Q is given by its equation Q�xx � �� and q represents a point
of Q� i�e�� Q�qq � �� then

x � � Q�pp q� �Q�pq p

is a parametrization of Q� which is quadratic in the coordinates of p� Setting�
e�g�� p � p��� 
 � � � 
 pn���n��� where the pi are suitably choosen� it is
also quadratic in the homogeneous �i� Note that one may use any other
representation for p� e�g�� polar coordinates with the center q�

Figure ��� Parametrizing a quadric�

Conversely� the equation Q�xx � � of a quadric in An or Pn depends
on r � �n 
 ��n 
 ��� homogeneous coe�cients� the elements of C� Let
r � � pairs of conjugate points� pi and qi � be given� and let x denote some

��



arbitrary point of Q� Then the r � � conditions Q�pi qi � � together with
Q�xx � � form a homogeneous linear system for the r unknown coe�cients
of C� Setting its determinant to zero results in the equation of Q�

� Duality

In homogeneous or projective coordinates the equation of a hyperplane sim�
pli�es to

utx � u��� 
 u��� 
 � � �
 un�n�

The ui are homogeneous coordinates of the hyperplane � just as the �i for
x� Homogeneous coordinates can either represent a point or a hyperplane�
Consequently any con�guration of points and hyperplanes has a dual con�g�
uration of hyperplanes and points� where the dual of a point or hyperplane is
a hyperplane or point represented by the same coordinates� More generally�
the hyperplanes containing some points b�� � � � �b �d are dual to the points
of intersection of the hyperplanes b�� � � � �bd � and vice versa�

Figure ��� Quadrangle and dual quadrilateral�

Note that the duality depends on the dimension of the space� For ex�
ample� Pascal�s and Brianchon�s con�guration are dual in the plane� where
points and tangents of a conic section are dual elements�

� Osculating Curves and Surfaces

An important task in CAGD is to connect curves and surfaces smoothly�
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��� Curve and Surface

A curve x�t in a�ne space An is called regular at t� if �x�t� �� o�

Figure ��� Contact of order two�

The curve x�t is said to have a contact of order r at t� with a surface
given by the equation F �x � �� � if it is regular at t� and if F �x�t and
its derivatives up to order r vanish at t � t�� This means geometrically that
the curve has r 
 � coalescing points in common with the surface at t � t��
Note that this de�nition does not depend on the parametrization of x�t�
Note also that by its geometric meaning the contact of order r is projectively
invariant�

��� Curve and Curve

A second curve y�s given by the intersection of a number of surfaces contacts
x�t at t� with order r if x�t contacts all these surfaces with at least order
r�

If the second curve y�s is given parametrically� then both curves have
contact of order r at t� if there exists a regular reparametrization t � t�s for
x�t such that the Taylor expansions of x�t�s and y�s agree at t� � t�s�
up to order r� This condition can be expressed by the chain rule as a system
of r
 � linear equations� Therefore contact of order r is referred to as chain
rule continuity�

For example� a curve and its osculating circle at a point t� have contact
of order ��

��



��� Surface and Surface

Two surfaces have contact of order r at p if all regular curves that lie on one
of them and meet p have at least contact of order r with the other surface�
This means that after a suitable reparametrization the Taylor expansions of
both surfaces at p agree up to order r�

��� Contour Lines� Re�ection Lines and Isophotes

There are some important helpful curves to check the smoothness of surfaces
visually�

Figure ��� Re�ection line and isophote�

A re�ection line on a surface consists of all points p whose con�
nection with some �xed point e� the eye� is re�ected into a ray
that meets a given �xed line L�

An isophote on a surface consists of all points p whose connection
with the eye e forms a �xed angle with the surface normal at p�

Contour lines are special isophotes� They consist of all points p
where the tangent plane meets e�

In general� on composite surfaces contur lines� re�ection lines and isophotes
have a lower order of contact than the surfaces themselves�

Note that all three kinds of curves may consist of several parts� Note also
that the use of in�nite elements e and L simpli�es their computation�

��



Figure ��� Contour lines�

� Di�erential Fundamentals

Arc length� curvature and torsion describe the local properties of a curve� the
curvature of so�called principal normal sections describe the local properties
of surfaces� The main tool for such investigations is a local frame�


�� Arc Length and Osculating Plane

Let a curve in E� be given parametrically as x � x�t and let

a� � x�t�� v� � �x�t�� v� � �x�t��

denote its point and �rst two derivatives at some t�� If v� �� �� its tangent
at a� is given by

p � a� 
 ��v��

If v� � v� �� o� its osculating plane at a� is given by

p � a� 
 ��v� 
 ��v��

The di�erential term ds � k �x�tkdt is called the arc element of x�t� and
the integral

s�t �

tZ
t�

k �x�tkdt

its arc length� beginning at t�� The arc length represents the natural param�
eter of the curve� In most cases it can only be computed approximately�

��




�� Curvature and Torsion

The natural parameter s is very helpful to derive general curve properties�
E�g�� let ��s and ��s denote the angles of the tangent and the osculating
plane at s with the tangent and osculating plane at some s�� respectively�
and let the prime � denote di�erentiation with respect to arc length� Then

� � ���s� and � � ���s�

are called curvature and torsion of x�t at s�� respectively� Note that � � ���
represents the radius of the osculating circle�

Figure ��� Curvature and torsion of a rational B�ezier curve�

For example� a rational curve of degree n with B�ezier points bi � ��i� �ib
t
i	
t

has the span of b�� b� as tangent at b�� and the span of b�� b�� b� as oscu�
lating plane at b�� At t � � one has

��� �
n� �

n

����
���

b

a�
and � �� �

n� �

n

����
����

c

a b
�

where a� b� c denote the distances of b� from b�� of b� from the tangent at
b�� and of b� from the osculating plane at b�� respectively�


�� The Frenet Frame

Gram�Schmidt orthogonalization applied to �x� �x� x��� at x�t� results in the
so�called Frenet frame �tmb	 � which depends on t� One has

�t�m�b�	 � �tmb	

�
�� � �� �
� � ��
� � �

�
�� �

which is an important tool for further investigations� see ��	� ��	 and ��	�

��



Figure ��� Curve with derivatives� osculating plane and Frenet frame�


�� Curves on Surfaces

Let a surface be given parametrically as

x � x�u� v � x�u�

The lines u � fixed� v � fixed are called iso�lines� If the partial derivatives
xu and xv are linearly independent� the surface normal is de�ned by

n � �xu � xv	�kxu � xvk�

Let u � u�t denote some curve in the u�plane� Then� in general� x �
x�u�t represents a curve on the surface� The arc element ds of this curve
is given by its square

ds� � �E �u� 
 �F �u �v 
G �v� dt��

where E � xt
uxu � F � xt

uxv � and G � xt
vxv � are well�known as Gaussian

�rst fundamental quantities� Note that kxu � xvk� � EG� F ��


�� Meusnier	s Sphere and Dupin	s Indicatrix

Consider all curves on a surface meeting a given point p with a given tangent
t there� One has �

The osculating circles of these curves lie on a sphere �Meusnier�s

sphere�

��



Figure ��� Local frames on a surface�

It follows that the radius of the osculating circle of a surface curve is given
by � � �� cos 
� where 
 denotes the angle between the surface normal and
the osculating plane and �� is the radius of Meusnier�s sphere� The inverse
�� � ���� is called the normal curvature of the surface at p in direction of
t� Hence it is su�cient to know the curvature of one of these curves and the
angle of its osculating plane with n in order to compute all others� ��E

Figure ��� Meusnieur�s sphere and Dupin�s indicatrix�

In general� the normal curvature �� di�ers for di�erent t� For all tangent
directions t at p consider the points

q � p

p
�� t

of the tangent plane with distance
p
�� from p� One has�

The points q lie on a conic section with center p �Euler�s theo�

rem�

��



This conic section is also known as Dupin�s indicatrix� Its axis directions
are called the principal directions� and the corresponding values of � � ����
are called the principa� l curvatures of the surface at p� mostly denoted by
�� � ���� and �� � �����

Note that Dupin�s indicatrix can be an ellipse� a pair of parallel lines� or
a hyperbola� In case of a hyperbola it has two real asymptotic directions �
The normal curvature is zero there and �� is in�nite�

If �� � �� � then Dupin�s indicatrix is a circle and p is called an umbilical
or spherical point�


�� The Curvatures of a Surface

Because of its geometric meaning Dupin�s indicatrix and consequently the
principal curvatures �� and �� at a point p do not depend on the parametric
representation of the surface�

The expressions

K � �� �� and H � ��� 
 �� � ��

are called Gaussian curvature and mean curvature of the surface at p� respec�
tively� Both give important information about the smoothness of a surface�
Moreover� Gauss has shown thatK depends on E� F � and G and their deriva�
tives only� This means that K depends on the inner measurements on the
surface only and is invariant under deformations of the surface that do not
distort the measurement of lengths on the surface�
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