In dieser Vorlesung werden Konzepte der Differentialgeometrie behandelt, die für die Computergrafik und im Kurven und Flächen-Design wichtig sind. Insbesondere werden besprochen:
Krümmungen, Isophoten, geodätische Linien, Krümmungslinien, Parallelkurven und -flächen, Minimalflächen, verzerrungsarme Parametrisierungen, abwickelbare Flächen, Auffaltungen.
Diese Konzepte werden anhand differenzierbarer Kurven und Flächen eingeführt. Darauf aufbauend wird die Approximation und praktische Berechnung dieser Konzepte diskutiert. Insbesondere werden analoge diskrete Konzepte für Dreiecksnetze entwickelt, die zunehmend für Flächendarstellungen eingesetzt werden.
Literatur
Kapitel 1-3
- W. Boehm, H. Prautzsch. Geometric Concepts for Geometric Design. AK Peters 1994.
- M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice
Hall, Inc., 1976.
Kapitel 4
- U. Pinkall, K. Polthier. Computing Discrete Minimal Surfaces and their conjugates. Experimental Math. 2, 1 (1993) 15-36.
- M. Desbrun, M. Meyer und P. Alliez. Intrinsic Parameterizations of Surface Meshes. In G. Drettakis und H.-P. Seidel (Hrsg.), Computer Graphics Forum 21 (Eurographics 2002), 2002. http://citeseer.ist.psu.edu/desbrun02intrinsic.html
Kapitel 5
- D.S. Meek, D.J. Walton. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design. 17 (2000) 521-543.
- J.-M. Morvan and B. Thibert. Smooth surface and triangular mesh: comparison
of the area, the normals and the unfolding. In Proceedings of the seventh ACM
symposium on Solid modeling and applications, pages 147–158. ACM Press, (2002). - G. Xu. Convergence analysis of a discretization scheme for Gaussian curvature over triangular surfaces. Computer Aided Geometric Design 23 (2006) 193-207
- R. Sauer. Differenzengeometrie. Springer-Verlag, (1970).
Kapitel 6
- Gabriel Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. In Proceedings of Fifth International Conference on Computer Vision (ICCV’95), 1995. http://mesh.caltech.edu/taubin/publications/taubin-iccv95b.pdf
-
Meyer, M., Desbrun, M., Schröder, P. and Barr A.H. (2003), Discrete differential-geometry operators for triangulated 2-manifolds. In H.-C. Hege and K. Polthier, editors, Visualization and Mathematics III, pp. 35--57, Springer-Verlag, Heidelberg. http://citeseer.ist.psu.edu/487176.html
- Kilian, M. Differentialgeometrische Konzepte für Dreiecksnetze. Diplomarbeit U Karlsruhe 2004. intern/diplomarbeiten/da-kilian.pdf
Kapitel 7
- N. Max. Weights for Computing Vertex Normals from Facet Normals. Journal of Graphics Tools, 4(2):1–6, 1999.
- Sheng-Gwo Chen and Jyh-Yang Wu. Estimating normal vectors and curvatures by centroid weights. Computer Aided Geometric Design, 21:447–458, 2004.
- S. Jin, R. Lewis, and D. West. A comparison of algorithms for vertex normal computation. The Visual Computer 21(1-2): 71-82 (2005)
Kapitel 8
- Polthier, K. and Schmies, M. 2006. Straightest geodesics on polyhedral surfaces. In ACM SIGGRAPH 2006 Courses, New York, NY, 30-38. http://portal.acm.org/citation.cfm?id=1185664&jmp=cit&coll=GUIDE&dl=GUIDE&CFID=14237312&CFTOKEN=45492835# (mit Video des Vortrags)
- M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice Hall, Inc., 1976.
Kapitel 9
- V. Surazhsky, T. Surazhsky, D. Kirsanov, S. Gortler, H. Hoppe. Fast exact and approximate geodesics on meshes. Recognizing surfaces using three-dimensioinal textures. In ACM Siggraph Proc. (2005) 553-560. http://portal.acm.org/citation.cfm?id=1073204.1073228
- D. Bommes, L. Kobbelt. Accurate Computation of Geodesic distance fields for polygonal curves aon triangle meshes. VMV 2007. http://www.graphics.rwth-aachen.de/uploads/media/bommes_07_VMV_01.pdf
- Tang, Wu Zhang, Zhang. Fast approximate geodesic paths on triangle mesh. Intl Journal of Automation and Computing 4(1) (2007) 8-13. http://www.springerlink.com/content/d751352840j61030/
- Ying, Candès. Fast geodesic computation with the phase flow method. Journal of Computationi Physics 220 (2006) 6-18. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6WHY-4KW60T6-3&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=a92cbb05a7ed25121da11d497f81b0c5